A novel unsorted spike feature based real-time sensory event detection for
closed-loop control
- Title
- A novel unsorted spike feature based real-time sensory event detection for
closed-loop control
- Authors
- 한성민; 추준욱; 최귀원; 박종웅; 윤인찬
- Keywords
- spinal cord; pattern recognition; sensory event
- Issue Date
- 2015-11
- Publisher
- International BioMedical Engineering Conference 2015 (IBEC 2015)
- Citation
- , 145
- Abstract
- The goal of the current study was to investigate the possibility of sensory event detection from the afferent signal recorded by using a multichannel micro-electrode on the dorsal root ganglion without spike sorting. We particularly considered to extract the most informative feature vector from recorded neural signals using feature combination of previous studies such as electroneurograhpy signals, electromyography signals and neural spikes. Principal component analysis was used to reduce dimensionality of feature vector, and multilayer perceptron classifier was used to detect sensory events. In this study, a novel unsorted spike-based feature extraction methods was proposed to enhance the detection accuracy of sensory events.
- URI
- https://pubs.kist.re.kr/handle/201004/58419
- Appears in Collections:
- KIST Publication > Conference Paper
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.