Full metadata record

DC FieldValueLanguage
dc.contributor.author유병용-
dc.contributor.author성영배-
dc.contributor.authorRonald I. Dorn-
dc.date.accessioned2021-06-09T04:17:02Z-
dc.date.available2021-06-09T04:17:02Z-
dc.date.issued2016-11-
dc.identifier.citationVOL 162-154-
dc.identifier.issn0012-8252-
dc.identifier.other47704-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/64957-
dc.description.abstractThis paper integrates prior scholarship on desert pavements with a case study of pavements on stream terraces in the Sonoran Desert to analyze the processes and site conditions that facilitate the survival of ancient desert pavements. This synthesis identifies vital factors, key factors, and site-specific factors promoting pavement stability. Hyperaridity is the vital factor in pavements surviving for 106 years or more, aided by minimal bioturbation and clast-size reduction. Three key factors aid in pavements surviving for 104 to 105 years: accumulation of allochthonous dust underneath pavement cobbles-
dc.description.abstracta flat topography-
dc.description.abstractand a lack of headward retreating swales or gullies. A unified explanation for pavement longevity, however, did not emerge from a literature review, because a variety of site-specific factors can also promote pavement antiquity including: resistant bedrock beneath the pavement-
dc.description.abstractdisk-shaped cobbles to promote dust accumulation-
dc.description.abstractand microclimatological and ecological reasons for minimal bioturbation. Both key and site-specific explanations for pavement longevity apply well to a case study of pavements on stream terraces in the Sonoran Desert, central Arizona. The buildup of cosmogenic 10Be and in situ14C, optically stimulated luminescence and varnish microlamination ages reveal stable pavements range in age between ~ 30 and 332 ka with conditions for longevity including: flat surface topography-
dc.description.abstractpavements underlain by consolidated granitic bedrock-
dc.description.abstracta lack of headward-retreating gullies and swales-
dc.description.abstract87Sr/86Sr analyses indicating the infiltration of allochthonous dust floating disk-shaped pavement cobbles-
dc.description.abstractand a quartzite lithology resistant to disintegration. However, 10Be ages also indicate evidence for the instability of desert pavements on stream terraces underlain by unconsolidated playa clays and unconsolidated fanglomerate-
dc.description.abstractthese weaker materials allowed the growth of headward-retreating swales, t-
dc.publisherEarth-science reviews-
dc.subjectCosmogenic nuclides-
dc.subjectGeomorphology-
dc.subjectLandform evolution-
dc.subjectQuaternary-
dc.subjectSoils-
dc.titleEvaluating the life expectancy of a desert pavement-
dc.typeArticle-
dc.relation.page129154-
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE