Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination

Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination
박대찬Jiwon LeeDaniel R BoutzVeronika ChromikovaM Gordon JoyceChristopher VollmersKwanyee LeungAndrew P HortonBrandon J DeKoskyChang-Han LeeJason J LavinderEllen M MurrinConstantine ChrysostomouKam Hon HoiYaroslav TsybovskyPaul V ThomasAliaksandr DruzBaoshan ZhangYi ZhangLingshu WangWing-Pui KongLyubov I PopovaCornelia L DekkerMark M DavisChalise E CarterTed M RossAndrew D EllingtonPatrick C WilsonEdward M MarcotteJohn R MascolaGregory C IppolitoFlorian KrammerStephen R QuakePeter D KwongGeorge Georgiou
Issue Date
Nature medicine
VOL 22, NO 12-1464
Molecular understanding of serological immunity to influenza has been confounded by the complexity of the polyclonal antibody response in humans. Here we used high-resolution proteomics analysis of immunoglobulin (referred to as Ig-seq) coupled with high-throughput sequencing of transcripts encoding B cell receptors (BCR-seq) to quantitatively determine the antibody repertoire at the individual clonotype level in the sera of young adults before and after vaccination with trivalent seasonal influenza vaccine. The serum repertoire comprised between 40 and 147 clonotypes that were specific to each of the three monovalent components of the trivalent influenza vaccine, with boosted pre-existing clonotypes accounting for similar to 60% of the response. An unexpectedly high fraction of serum antibodies recognized both the H1 and H3 monovalent vaccines. Recombinant versions of these H1 + H3 cross-reactive antibodies showed broad binding to hemagglutinins (HAs) from previously circulating virus strains; several of these antibodies, which were prevalent in the serum of multiple donors, recognized the same conserved epitope in the HA head domain. Although the HA-head-specific H1 + H3 antibodies did not show neutralization activity in vitro, they protected mice against infection with the H1N1 and H3N2 virus strains when administered before or after challenge. Collectively, our data reveal unanticipated insights regarding the serological response to influenza vaccination and raise questions about the added benefits of using a quadrivalent vaccine instead of a trivalent vaccine
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.