Full metadata record

DC FieldValueLanguage
dc.contributor.author최재영-
dc.contributor.author윤현식-
dc.contributor.author장민-
dc.contributor.author신원식-
dc.date.accessioned2021-06-09T04:20:31Z-
dc.date.available2021-06-09T04:20:31Z-
dc.date.issued2018-10-
dc.identifier.citationVOL 127-97-
dc.identifier.issn0892-6875-
dc.identifier.other51190-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/67970-
dc.description.abstract1, respectively, and for As(V) were 29.6&#8239-
dc.description.abstract1, 27.3&#8239-
dc.description.abstract1, and 31.3&#8239-
dc.description.abstract1, respectively. The pseudo-second-order equation for the adsorption of As(III) and As(V) fit the kinetics data well. The column study showed that the WRTAs are very effective adsorbents and exhibit&#8239-
dc.description.abstract>&#8239-
dc.description.abstract80% removal of As from the contaminated soil. The inhibition of As accumulation in plants (i.e., rice, chili, and sesame) by the WRTAs was evaluated and showed a 96% inhibition in As accumulation in chili roots for WRTA2. The suggested WRTAs are promising agents for the removal of As and heavy metals from heavily contaminated agricultural soil.-
dc.description.abstractThe potential of three different waste-reclaimed treatment agents (WRTAs) for removing arsenic was evaluated via laboratory-scale batches, column experiments, and field tests. WRTA1 was synthesized using acid mine drainage sludge (AMDS), cement, and sand. WRTA2 and WRTA3 were synthesized by adding fly ash or Ca(OH)2, respectively, to WRTA1. The maximum adsorption capacities of WRTA1, WRTA2, and WRTA3 for As(III) using the Langmuir model were 16.6&#8239-
dc.description.abstractmg&#8239-
dc.description.abstractg&#8722-
dc.description.abstract1, 14.5&#8239-
dc.description.abstract1, and 20.6&#8239-
dc.publisherMinerals engineering-
dc.subjectWaste-reclaimed treatment agent-
dc.subjectAcid mine drainage sludge-
dc.subjectArsenic-
dc.subjectAdsorption-
dc.subjectPlant transition-
dc.titleRemediation of aresenic-contaminated soils via waste-reclaimed treatment agents: Batch and field studies-
dc.typeArticle-
dc.relation.page9097-
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE