Anoctamin 1/TMEM16A controls intestinal Cl?secretion induced by carbachol andcholera toxin

Anoctamin 1/TMEM16A controls intestinal Cl?secretion induced by carbachol andcholera toxin
황은미홍규상오우택김아정Byeongjun LeeSung Hoon LeeHyungsup KimJiyoon KimMin Goo LeeJin-Young YangMi-Na KweonChung-Ming TseDonowitz Mark
Issue Date
Experimental & molecular medicine
VOL 51, NO 8-91-14
Calcium-activated chloride channels (CaCCs) mediate numerous physiological functions and are best known for the transport of electrolytes and water in epithelia. In the intestine, CaCC currents are considered necessary for the secretion of fluid to protect the intestinal epithelium. Although genetic ablation of ANO1/TMEM16A, a gene encoding a CaCC, reduces the carbachol-induced secretion of intestinal fluid, its mechanism of action is still unknown. Here, we confirm that ANO1 is essential for the secretion of intestinal fluid. Carbachol-induced transepithelial currents were reduced in the proximal colon of Ano1-deficient mice. Surprisingly, cholera toxin-induced and cAMP-induced fluid secretion, believed to be mediated by CFTR, were also significantly reduced in the intestine of Ano1-deficient mice. ANO1 is largely expressed in the apical membranes of intestines, as predicted for CaCCs. The Ano1-deficient colons became edematous under basal conditions and had a greater susceptibility to dextran sodium sulfate-induced colitis. However, Ano1 depletion failed to affect tumor development in a model of colorectal cancer. We thus conclude that ANO1 is necessary for cAMP- and carbachol-induced Cl− secretion in the intestine, which is essential for the protection of the intestinal epithelium from colitis.
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.