Techno-economic analysis of mechanical vapor recompression for process integration of post-combustion CO2 capture with downstream compression

Title
Techno-economic analysis of mechanical vapor recompression for process integration of post-combustion CO2 capture with downstream compression
Authors
이웅Yeong Su JeongJaeheum JungChangryung YangChonghun Han
Issue Date
2015-12
Publisher
Chemical Engineering Research and Design
Citation
VOL 104-225
Abstract
Post-combustion capture of CO2 using amine solvent is by tar the most practical and mature technology, however, energy requirement for solvent regeneration still remains as the biggest obstacle to overcome. In this article, post-combustion CO2 capture process model was validated using experimental data of an existing test bed. Based on the validated model, mechanical vapor recompression (MVR) process is proposed which reduces thermal energy for solvent regeneration by recovering heat from compression process required for CO2 transportation. MVR process not only reduces the amount of steam extracted from the power plant, but can also serve as an interface between CO2 capture and compression for process integration. According to the simulation results, energy saving of 8.4% was observed in comparison with the base case, which is a conventional CO2 capture process followed by 2-stage compression. In addition to energy analysis, exergy analysis based on the 2nd law of thermodynamics and economic evaluation were performed to determine optimal operating condition of the MVR process.
URI
https://pubs.kist.re.kr/handle/201004/70714
ISSN
0263-8762
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE