Support Effects in Single-Atom Platinum Catalysts for Electrochemical Oxygen Reduction
- Title
- Support Effects in Single-Atom Platinum Catalysts for Electrochemical Oxygen Reduction
- Authors
- 양성은; 탁영주; 김지환; Aloysius Soon; 이현주
- Issue Date
- 2017-02
- Publisher
- ACS catalysis
- Citation
- VOL 7, NO 2-1307
- Abstract
- Single-atom catalysts (SACs) provide an ideal platform for reducing noble-metal usage. SACs also exhibit unusual catalytic properties due to the absence of a metal surface. The role of the support may have a significant effect on the catalytic properties, similar to that of the ligand molecules in homogeneous catalysts. Here, the support effect was demonstrated by preparing a single-atom platinum catalyst on two different supports: titanium carbide (Pt1/TiC) and titanium nitride (Pt1/TiN). The formation of single-atom Pt was confirmed by STEM, EXAFS, and in situ IR spectroscopy. Pt1/TiC showed higher activity, selectivity, and stability for electrochemical H2O2 production than Pt1/TiN. Density functional theory calculations presented that oxygen species have strong affinity into Pt1/TiN, possibly acting as surface poisoning species, and Pt1/TiC preserves oxygen-o xygen bonds more with higher selectivity toward H2O2 production. This work clearly shows that the support in SACs actively participates in the surface reaction and does not just act as anchoring sites for single atoms.
- URI
- https://pubs.kist.re.kr/handle/201004/71205
- ISSN
- 2155-5435
- Appears in Collections:
- KIST Publication > Article
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.