Full metadata record

DC FieldValueLanguage
dc.contributor.author김남동-
dc.contributor.author김정길-
dc.contributor.author김현철-
dc.contributor.author길명섭-
dc.date.accessioned2021-06-09T04:24:32Z-
dc.date.available2021-06-09T04:24:32Z-
dc.date.issued2020-04-
dc.identifier.citationVOL 186-107824-
dc.identifier.issn1359-8368-
dc.identifier.other54959-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/71453-
dc.description.abstractCarbon nanofibers (CNFs) have been continuously studied as a high performance electrode material due to their versatility in energy storage/conversion systems. The main concern of fabricating CNFs as electrode materials is to endow pristine carbon materials with adequate pore structure and active surface functional groups. Herein, we have fabricated porous hollow carbon nanofibers (PHCNF) with high nitrogen contents (13.4%) via co-axial electrospinning and subsequent phase separation process by using poly(styrene-co-acrylonitrile) (SAN) as core and polyacrylonitrile (PAN)/polyvinylpyrrolidone (PVP) mixture as shell. Simple etching process prior to carbonization has a significant effect on making hierarchical pore structure. Moreover, hollow characteristics allow efficient heat treatment for making high crystalline structure and favorable nitrogen functional group. Such an optimized structural and surface functional properties result in a remarkable supercapacitor performance. The designed structure achieves an energy density of 4.12 Wh kg&#8722-
dc.description.abstract1 at power density of 15 kW kg&#8722-
dc.description.abstract1, and a 92.33% retention rate in 10,000 charge/discharge cycles. The results offer a new strategy for developing advanced carbon material based electrode for high performance storage devices such as supercapacitors, lithium-ion batteries, and sensors.-
dc.publisherComposites. Part B, Engineering-
dc.titleN-doped hierarchical porous hollow carbon nanofibers based on PAN/ PVP@SAN structure for high performance supercapacitor-
dc.typeArticle-
dc.relation.page107825107824-
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE