Full metadata record

DC FieldValueLanguage
dc.contributor.author김경환-
dc.contributor.authorJaehun Cho-
dc.contributor.authorMyoung-Jae Lee-
dc.contributor.authorHyeon-Jun Lee-
dc.contributor.authorJune Seo Kim-
dc.date.accessioned2021-06-09T04:25:06Z-
dc.date.available2021-06-09T04:25:06Z-
dc.date.issued2020-10-
dc.identifier.citationVOL 33-015803-
dc.identifier.issn0953-8984-
dc.identifier.other55536-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/71937-
dc.description.abstractNon-equilibrium domain wall dynamics on a perpendicularly magnetized nanowire manipulated by the transverse magnetic field pulse are numerically investigated. We systematically observe the large displacements of the chiral domain wall and the domain wall tilting angles generated by Dzyaloshinskii&#8211-
dc.description.abstractMoriya interaction during the competition between the precession torque and the magnetic damping process. The magnetic-property-dependent domain wall displacements exhibit that the lower magnetic damping constants and Dzyaloshinskii&#8211-
dc.description.abstractMoriya energy densities generate the longer transition times and the significant larger domain wall displacements for the non-equilibrium magnetization dynamics. Compare with the spin-polarized-current-driven domain wall dynamics, the transverse magnetic field pulses guarantee faster domain wall movements without Walker breakdown and lower energy consumptions because it is free from the serious Joule heating issue. Finally, we demonstrate successive chiral domain wall displacements, which are necessary to develop multilevel resistive memristors for next-generation artificial intelligent devices based on magnetic domain wall motions.-
dc.publisherJournal of physics, Condensed matter : an Institute of Physics journal-
dc.subjectdomain wall motion-
dc.subjectDzyaloshinskii-Moriya interaction-
dc.titleNon-equilibrium chiral domain wall dynamics excited by transverse magnetic field pulses-
dc.typeArticle-
dc.relation.page015803015803-
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE