Tunable Layer-by-Layer Polyelectrolyte Platforms for Comparative Cell Assays

Authors
Seo, JinhwaLee, HyojinJeon, JonghoJang, YeongseonKim, RaehyunChar, KookheonNam, Jwa-Min
Issue Date
2009-08
Publisher
AMER CHEMICAL SOC
Citation
BIOMACROMOLECULES, v.10, no.8, pp.2254 - 2260
Abstract
We developed a cell-based assay based on the spin-assisted layer-by-layer (LbL) assembled polyelectrolyte matrix platforms. Three types of human breast epithelial cell lines including normal cells (184B5), noncancerous fibrocystic disease cells (MCF 10F), and metastatic cancerous cells (CAMA-1) were cultured, analyzed, and compared in parallel on various LbL-assembled polymer films. Poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) electrolyte polymers were used as the basic building units to form various LbL polyelectrolyte matrices. The mechanical rigidity, surface charge, and biorecognition property of the LbL platforms were controlled by tailoring the LbL surface, thermal cross-linking, and protein modification. Cellular phenotypic changes in adhesion, proliferation, and morphology on these LbL films were characterized and analyzed for the three different cell types. Our analysis results indicate that the cellular phenotype can be controlled by taking advantage of different surface charge, mechanical property, and biological modification (i.e., fibronectin in this case) of the LbL multilayer platforms. Importantly, cell phenotypical quantification results show that the cell spreading area per cell and optical density are useful parameters in distinguishing metastatic cancer cells from normal or fibrocystic disease cells on these LbL films. These LbL-based cell assay platforms have a potential for the development of various disease diagnostic cell assays.
Keywords
MULTILAYER FILMS; YOUNGS MODULUS; CANCER CELLS; THIN-FILMS; FIBRONECTIN; ADHESION; STIFFNESS; SURFACES; FABRICATION; ADSORPTION; MULTILAYER FILMS; YOUNGS MODULUS; CANCER CELLS; THIN-FILMS; FIBRONECTIN; ADHESION; STIFFNESS; SURFACES; FABRICATION; ADSORPTION
ISSN
1525-7797
URI
https://pubs.kist.re.kr/handle/201004/132273
DOI
10.1021/bm900439r
Appears in Collections:
KIST Article > 2009
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE