Full metadata record

DC Field Value Language
dc.contributor.authorCho, Yunho-
dc.contributor.authorJang, Deogjin-
dc.contributor.authorPark, Jong-Jin-
dc.contributor.authorKye, Hyojin-
dc.contributor.authorKwon, Ji Eon-
dc.contributor.authorKim, Bong-Gi-
dc.date.accessioned2024-01-16T07:30:05Z-
dc.date.available2024-01-16T07:30:05Z-
dc.date.created2024-01-15-
dc.date.issued2024-09-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/112917-
dc.description.abstractRedox-active organic molecules (ROMs) play a crucial role as electrode materials in the development of future energy storage devices. In this study, we synthesized a bipolar-type ROM, NDI-2Vi, that comprises a triad of an n-type naphthalene diimide (NDI) unit and two p-type viologen (Vi) units, which can reversibly insert/extract the Li cations and Br/TFSI anions, respectively, during the redox reactions in nonaqueous electrolyte. The bipolar redox mechanism allowed NDI-2Vi to always bear certain charges with counterions, effectively preventing undesired dimerization decomposition of the molecules through the Coulombic repulsion. Through ex situ X-ray photoelectron spectroscopy (XPS), its reversible bipolar redox mechanism accompanying dual-ion intercalation with anion exchange was elucidated. The NDI-2Vi electrode delivered a specific capacity of 156.8 mA h g?1, corresponding to 98.5% of its theoretical capacity storing six electrons per molecule. By employing a highly concentrated electrolyte, its cycle stability could be markedly improved due to retarded dissolution of active materials. Finally, kinetic analyses revealed that the NDI-2Vi electrode undergoes rapid capacitive electrochemical reactions, leading to its high rate capability, even in the highly concentrated electrolyte.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleBipolar-Type Organic Electrode Material Composed of a Viologen-Naphthalene Diimide-Viologen Triad for Li-Organic Batteries-
dc.typeArticle-
dc.identifier.doi10.1021/acsaem.3c02025-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Energy Materials, v.7, no.18, pp.7615 - 7623-
dc.citation.titleACS Applied Energy Materials-
dc.citation.volume7-
dc.citation.number18-
dc.citation.startPage7615-
dc.citation.endPage7623-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeReview; Early Access-
dc.subject.keywordPlusCATHODE MATERIALS-
dc.subject.keywordPlusION BATTERIES-
dc.subject.keywordPlusSUBSTITUENT-
dc.subject.keywordPlusCHARGE-
dc.subject.keywordAuthorBipolar-type organic molecule-
dc.subject.keywordAuthorOrganic lithium ion batteries-
dc.subject.keywordAuthorNaphthalene diimide-
dc.subject.keywordAuthorViologen-
dc.subject.keywordAuthorDual-ion intercalation-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE