Full metadata record

DC Field Value Language
dc.contributor.authorSafira Ramadhani-
dc.contributor.authorChan Kim-
dc.contributor.authorJaewon Kirk-
dc.contributor.authorHyuntae Sohn-
dc.contributor.authorSuk Woo Nam-
dc.contributor.authorYongmin Kim-
dc.contributor.authorKwang Ho Song-
dc.contributor.authorJeong, Hyang soo-
dc.date.accessioned2024-01-17T09:00:02Z-
dc.date.available2024-01-17T09:00:02Z-
dc.date.created2024-01-17-
dc.date.issued2024-01-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/112920-
dc.description.abstractChemical compression enables direct high-pressure hydrogen generation from chemical hydrogen storage materials in a closed system. By utilizing a water-soluble catalyst, this method achieves rapid formic acid (FA)-mediated sodium borohydride (SBH) hydrolysis, followed by FA dehydrogenation at moderate temperatures, using a mixture of SBH and FA. The sequential reactions facilitate simultaneous dehydrogenation of both carriers without mutual inhibition, resulting in impressive hydrogen pressures (650 bar) and storage capacities (4.22 wt % and 48.25 gH2 L?1) with minimal CO content. The exothermic SBH hydrolysis and endothermic FA dehydrogenation effectively enable heat-coupling reactions, enhancing overall process efficiency. Moreover, the study introduces a cost-effective SBH regeneration method, evaluating the closed hydrogen cycle’s feasibility in SBH-FA chemical compression technology. Economic analysis demonstrates reduced compressor size and overall cost benefits at hydrogen fueling stations, making this innovative approach promising for fuel-cell-based electric vehicle refueling at 700 bars, with potential energy and cost savings.-
dc.languageEnglish-
dc.publisherCell Press-
dc.titleSequential reactions toward a high-pressure H2 generation from a mixture of sodium borohydride and formic acid-
dc.typeArticle-
dc.identifier.doi10.1016/j.xcrp.2023.101759-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCell Reports Physical Science, v.5, no.1-
dc.citation.titleCell Reports Physical Science-
dc.citation.volume5-
dc.citation.number1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001170401200001-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusHYDROGEN STORAGE-
dc.subject.keywordPlusAMMONIA-BORANE-
dc.subject.keywordPlusDEHYDROGENATION-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusFORMATE-
dc.subject.keywordPlusDECOMPOSITION-
dc.subject.keywordPlusREGENERATION-
dc.subject.keywordPlusHYDROLYSIS-
dc.subject.keywordPlusCHALLENGES-
dc.subject.keywordPlusREDUCTION-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE