Full metadata record

DC Field Value Language
dc.contributor.authorSon, Youhyun-
dc.contributor.authorMo, Jeongmin-
dc.contributor.authorYong, Euiju-
dc.contributor.authorAhn, Jeongyeon-
dc.contributor.authorKim, Gyuchan-
dc.contributor.authorLee, Wonyoung-
dc.contributor.authorKwon, Cheong Hoon-
dc.contributor.authorJu, Hyun-
dc.contributor.authorLee, Seung Woo-
dc.contributor.authorKim, Byung-Hyun-
dc.contributor.authorKim, Myeongjin-
dc.contributor.authorCho, Jinhan-
dc.date.accessioned2024-01-19T08:00:09Z-
dc.date.available2024-01-19T08:00:09Z-
dc.date.created2024-01-11-
dc.date.issued2024-04-
dc.identifier.issn0926-3373-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/112930-
dc.description.abstractDeveloping nonnoble electrocatalyst-based water-splitting electrodes with high operational stability and low overpotentials is one of the most critical challenges in commercially available water-splitting reactions. In this study, we present water-splitting textile electrodes enabling remarkably low overpotentials and high stable operation. We first assembled conductive multi-walled-carbon-nanotubes (MWCNTs) with amine molecule-based linkers onto cotton textiles and subsequently electrodeposited Ni onto the MWCNT-incorporated textile. For the preparation of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrodes, NiMo and NiFe were further electrodeposited onto the Ni-electrodeposited textile electrode, respectively. These electrodes exhibited considerably low overpotentials in alkaline media (8 mV at 10 mA cm(-2) for HER and 189 mV at 50 mA cm(-2) for OER). Furthermore, the full-cell electrodes preserved a low cell voltage of 2.01 V at an unprecedentedly high current density of 3000 mA cm(-2) for a prolonged duration (> at least 1000 h).-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleHighly efficient water-splitting electrodes with stable operation at 3 A cm-2 in alkaline media through molecular linker assembly-induced all-in-one structured NiMo and NiFe electrocatalysts-
dc.typeArticle-
dc.identifier.doi10.1016/j.apcatb.2023.123563-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplied Catalysis B: Environment and Energy, v.343-
dc.citation.titleApplied Catalysis B: Environment and Energy-
dc.citation.volume343-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001133896700001-
dc.identifier.scopusid2-s2.0-85179079690-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusOXYGEN EVOLUTION REACTION-
dc.subject.keywordPlusHETEROSTRUCTURES-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusSPECTRA-
dc.subject.keywordPlusXPS-
dc.subject.keywordAuthorWater-splitting-
dc.subject.keywordAuthorCarbon nanotube-
dc.subject.keywordAuthorBinary nonnoble metal-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE