Full metadata record

DC Field Value Language
dc.contributor.authorKim, Do-Heon-
dc.contributor.authorKim, Jin-Kyeom-
dc.contributor.authorChoi, Sung Yeol-
dc.contributor.authorYang, Ya-
dc.contributor.authorSong, Hyun-Cheol-
dc.contributor.authorPark, Hye Sung-
dc.contributor.authorShim, Minseob-
dc.contributor.authorBaik, Jeong Min-
dc.date.accessioned2024-01-19T08:00:46Z-
dc.date.available2024-01-19T08:00:46Z-
dc.date.created2024-01-18-
dc.date.issued2024-02-
dc.identifier.issn1614-6832-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/112952-
dc.description.abstractReducing the impedance of a triboelectric nanogenerator (TENG) without power loss is crucial for enhancing its energy conversion efficiency and overall performance. In this paper, a novel signal management structure, based on a newly designed sliding-mode TENG, aimed at effectively reducing impedance by converting narrow, instantaneous signals into broader ones is presented. This transformation is accomplished by adding a grounded electrode connected to a high-inductive inductor and fine-tuning the parasitic capacitance of the dielectric material. Utilizing a highly resistive material like P(VDF-TrFE), a significant improvement in the TENG's performance is achieved, resulting in an increase of output power to 0.352 mW and a decrease in impedance from 3.2 to 0.3 M Omega. This results in a threefold increase in charging speed, which can be attributed to the reduced charge loss and improved matching at lower impedance. Based on these promising findings, the enhanced TENG is successfully connected to power a system for electrochemical CO2 reduction for CO production. This system effectively reduces the required electrochemical reduction potential by approximate to 15% under real environments.-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.titleAddressing Triboelectric Nanogenerator Impedance for Efficient CO2 Utilization-
dc.typeArticle-
dc.identifier.doi10.1002/aenm.202304012-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Energy Materials, v.14, no.8-
dc.citation.titleAdvanced Energy Materials-
dc.citation.volume14-
dc.citation.number8-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001137284700001-
dc.identifier.scopusid2-s2.0-85181467672-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusPOWER-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordAuthorparasitic capacitance-
dc.subject.keywordAuthorsignal management structure-
dc.subject.keywordAuthortriboelectric nanogenerator-
dc.subject.keywordAuthorCO2 reduction-
dc.subject.keywordAuthorimpedance reduction-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE