Full metadata record

DC Field Value Language
dc.contributor.authorKwon, Soon-Bum-
dc.contributor.authorKim, Youngjin-
dc.contributor.authorLee, Seockheon-
dc.contributor.authorHong, Seungkwan-
dc.date.accessioned2024-01-19T08:01:19Z-
dc.date.available2024-01-19T08:01:19Z-
dc.date.created2023-11-30-
dc.date.issued2024-01-
dc.identifier.issn0376-7388-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/112973-
dc.description.abstractForward osmosis (FO) membranes generally have a thin-film composite (TFC) structure comprising an ultrafiltration (UF)-grade support layer and a polyamide (PA) active layer. However, the lack of high-performance membranes limits FO. To improve the FO performance, internal concentration polarization (ICP) should be controlled to reduce the water flux within the support layer. In this study, a novel support-free molecular layerby-layer (SF-mLbL) technique using a microfiltration (MF)-grade support layer for minimum ICP was applied to produce a robust and uniform active layer, even on large pores of the support layer. Based on the location of graphene oxide (GO) nanoparticles, thin-film nanocomposite (TFN) and thin-film nanocomposite-interlayer (TFNi) membranes were fabricated. Among these, the TFNi membrane with the highest performance contained 0.7 wt% GO nanoparticles and was stacked in 15 cycles. The 0.7 wt%-15 cycles TFNi membrane showed high water flux (87.18 +/- 0.15 LMH) and low reverse salt flux (5.06 +/- 0.11 gMH) when deionized (DI) water and 0.5 M NaCl solution were used as feed and draw solutions, respectively, in FO mode. This study demonstrates that the SF-mLbL technique is suitable for manufacturing high-performance FO membranes.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleHigh-performance support-free molecular layer-by-layer assembled forward osmosis membrane incorporated with graphene oxide-
dc.typeArticle-
dc.identifier.doi10.1016/j.memsci.2023.122152-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Membrane Science, v.689-
dc.citation.titleJournal of Membrane Science-
dc.citation.volume689-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001104160000001-
dc.identifier.scopusid2-s2.0-85173986321-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaPolymer Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusFILM COMPOSITE MEMBRANES-
dc.subject.keywordPlusINTERNAL CONCENTRATION POLARIZATION-
dc.subject.keywordPlusSTRUCTURAL PARAMETER-
dc.subject.keywordPlusWATER FLUX-
dc.subject.keywordPlusNANOCOMPOSITE-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusINTERLAYER-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusFUTURE-
dc.subject.keywordPlusENERGY-
dc.subject.keywordAuthorForward osmosis-
dc.subject.keywordAuthorSupport -free molecular layer -by -layer-
dc.subject.keywordAuthorGraphene oxide-
dc.subject.keywordAuthorThin film nanocomposite-
dc.subject.keywordAuthorThin film nanocomposite-interlayer-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE