Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Hun Seok-
dc.contributor.authorKim, Young Hwan-
dc.contributor.authorBak, Seong-Min-
dc.contributor.authorKim, Kwang-Bum-
dc.date.accessioned2024-01-19T08:01:25Z-
dc.date.available2024-01-19T08:01:25Z-
dc.date.created2023-11-29-
dc.date.issued2024-01-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/112977-
dc.description.abstractMetal phosphides show promise as anode materials for high-energy potassium-ion batteries due to their high capacity. However, their cycling performance is hampered by volume changes. Although nanoparticle/carbon composites are commonly employed to tackle this issue, achieving uniform embedding within confined carbon structures still presents a challenge. In this study, we investigate the synthesis strategies of CoP/porous carbon composites using isostructural bimetallic and monometallic-zeolitic imidazolate framework (ZIF), and achieve uniform embedding of-4 nm CoP nanoparticles in porous carbon by utilizing a bimetallic Co/Zn ZIF. Conversely, monometallic ZIF-67 leads to substantial coarsening and non-uniform distribution of-25 nm CoP particles. The resulting bimetallic-ZIF-derived CoP/porous carbon composite exhibits a specific capacity of 490.5 mAh/g at 0.05 A/g for potassium-ion storage and remarkable cycling stability, retaining 100 % capacity over 500 cycles at 0.1 A/g. Differential capacity plots confirm improved reversibility of the CoP conversion reaction. Notably, the evaporation of Zn generates a pore structure that effectively confines CoP, preventing further ag-gregation during electrochemical cycling. This work showcases a unique synthesis strategy using a bimetallic ZIF for high-performance potassium-ion battery materials.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleMonometallic and bimetallic metal-organic frameworks derived CoP embedded in porous carbon: Monodisperse CoP nanoparticles for highly reversible potassium ion storage-
dc.typeArticle-
dc.identifier.doi10.1016/j.apsusc.2023.158679-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplied Surface Science, v.643-
dc.citation.titleApplied Surface Science-
dc.citation.volume643-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001094448700001-
dc.identifier.scopusid2-s2.0-85175190215-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusULTRALONG CYCLE LIFE-
dc.subject.keywordPlusFACILE SYNTHESIS-
dc.subject.keywordPlusRATIONAL DESIGN-
dc.subject.keywordPlusANODE MATERIALS-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusMOF-
dc.subject.keywordPlusCOMPOSITES-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordAuthorNanoparticle aggregation-
dc.subject.keywordAuthorCobalt phosphide-
dc.subject.keywordAuthorPotassium -ion battery-
dc.subject.keywordAuthorMetal-organic framework (MOF)-
dc.subject.keywordAuthorBimetallic metal-organic framework-
dc.subject.keywordAuthorMOF-derivatives-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE