Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Da Eun-
dc.contributor.authorIm, Jaemin-
dc.contributor.authorAhn, Yejin-
dc.contributor.authorHwang, Kyoungtae-
dc.contributor.authorKim, Jungwon-
dc.contributor.authorKwon, Ji Eon-
dc.contributor.authorPark, Sang Kyu-
dc.contributor.authorChoi, Hyun Ho-
dc.contributor.authorKim, Bong-Gi-
dc.date.accessioned2024-01-19T08:01:37Z-
dc.date.available2024-01-19T08:01:37Z-
dc.date.created2023-10-29-
dc.date.issued2024-01-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/112983-
dc.description.abstractDoping of conjugated polymers (CPs) is a promising strategy to obtain solutionprocessable and highly conductive films; however, the improvement in electrical conductivity is limited owing to the relatively poor carrier mobility of CPs. Herein, a CP with excellent molecular doping ability, i.e., poly[2-([2,2 '-bithiophen]-5-yl)3,8-difluoro-5,10- bis(5-octylpentadecyl)-5,10-dihydroindolo[3,2-b]indole] (PIDFBT) is wrapped onto the surface of single-walled carbon nanotubes (SWCNTs). The resulting PIDF-BT@SWCNT simultaneously achieves excellent solution dispersibility and a high electrical conductivity of over 5000 S cm(-1) through AuCl3 doping. The doping mechanism is systematically studied using spectroscopic analysis, and the four-probe field-effect transistor based on the doped PIDF-BT@SWCNT confirms a carrier mobility up to 138 cm(2) V-1 s(-1). The carriertransfer barrier energy is related to the Schottky barrier between the SWCNT and PIDF-BT, which can be controlled by doping. Finally, when the doped PIDFBT@SWCNT is applied to a thermoelectric device, a power factor exceeding 210 mu Wm(-1) K-2 is achieved because of its high electrical conductivity, even if the increased carrier density reduces the Seebeck coefficient.-
dc.languageEnglish-
dc.publisherWILEY-
dc.titleSequential Doping of Carbon Nanotube Wrapped by Conjugated Polymer for Highly Conductive Platform and Thermoelectric Application-
dc.typeArticle-
dc.identifier.doi10.1002/sstr.202300321-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSmall Structures, v.5, no.1-
dc.citation.titleSmall Structures-
dc.citation.volume5-
dc.citation.number1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.identifier.wosid001072131400001-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusCHARGE-TRANSPORT-
dc.subject.keywordPlusORGANIC SEMICONDUCTORS-
dc.subject.keywordPlusNETWORKS-
dc.subject.keywordPlusCOMPOSITES-
dc.subject.keywordAuthorCP-CNT hybrids-
dc.subject.keywordAuthordoping mechanisms-
dc.subject.keywordAuthormobilities-
dc.subject.keywordAuthormolecular dopings-
dc.subject.keywordAuthorthermoelectric performances-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE