Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Haneul-
dc.contributor.authorNa, Min Young-
dc.contributor.authorJun, Indong-
dc.contributor.authorJeon, Hojeong-
dc.contributor.authorKim, Yu-Chan-
dc.contributor.authorPark, Jin-Woo-
dc.contributor.authorChang, Hye Jung-
dc.date.accessioned2024-01-19T08:02:19Z-
dc.date.available2024-01-19T08:02:19Z-
dc.date.created2024-01-04-
dc.date.issued2024-05-
dc.identifier.issn1598-9623-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113011-
dc.description.abstractNiTi shape memory alloys, known as Nitinol, are highly valuable in medical fields for their unique attributes, including superelasticity, wear resistance, and biocompatibility. Laser treatment provides precise control over surface characteristics, enhancing biocompatibility. This study focuses on the effects of laser irradiation on NiTi alloy surfaces, particularly considering the number of laser scans and their impact on surface features. Even at low laser power, multiple high-frequency scans significantly alter surface roughness and induce phase transformation. After 16 repeated laser irradiations, amorphous Ti oxide transforms into crystalline anatase. Remarkably, anatase can further transform into rutile due to the influence of Ni nearby and TiO, due to insufficient oxygen content. The most notable outcome is the formation of a thick Ti oxide layer, causing unbound Ni to emerge on the surface, resulting in a Ni oxide layer. These findings highlight the importance of precisely adjusting laser parameters to achieve tailored surface properties for medical applications, addressing challenges and enhancing biocompatibility.-
dc.languageEnglish-
dc.publisher대한금속·재료학회-
dc.titleRepetitive Nanosecond Laser-Induced Oxidation and Phase Transformation in NiTi Alloy-
dc.typeArticle-
dc.identifier.doi10.1007/s12540-023-01581-w-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMetals and Materials International, v.30, no.5, pp.1200 - 1208-
dc.citation.titleMetals and Materials International-
dc.citation.volume30-
dc.citation.number5-
dc.citation.startPage1200-
dc.citation.endPage1208-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.identifier.wosid001125955700001-
dc.identifier.scopusid2-s2.0-85179717096-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusSURFACE OXIDATION-
dc.subject.keywordPlusTI-NI-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusTITANIUM-
dc.subject.keywordPlusBIOCOMPATIBILITY-
dc.subject.keywordPlusLAYER-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordPlusPROLIFERATION-
dc.subject.keywordPlusTEMPERATURES-
dc.subject.keywordPlusFIBROBLASTS-
dc.subject.keywordAuthorTransmission electron microscopy-
dc.subject.keywordAuthorLaser-
dc.subject.keywordAuthorSurface modification-
dc.subject.keywordAuthorNiTi alloy-
dc.subject.keywordAuthorOxidation-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE