Full metadata record

DC Field Value Language
dc.contributor.authorLee, Hayeon-
dc.contributor.authorKim, Minji-
dc.contributor.authorPark, Hyunyoung-
dc.contributor.authorYoo, Yiseul-
dc.contributor.authorNa, Sangmun-
dc.contributor.authorLim, Hee-Dae-
dc.contributor.authorKim, Jongsoon-
dc.contributor.authorYoon, Won-Sub-
dc.date.accessioned2024-01-19T08:02:21Z-
dc.date.available2024-01-19T08:02:21Z-
dc.date.created2024-01-04-
dc.date.issued2024-04-
dc.identifier.issn1616-301X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113013-
dc.description.abstractDeveloping sustainable Li-ion batteries requires high-energy cathodes based on low-cost, earth-abundant elements, moving away from low-reserve nickel and cobalt. Fe-based oxide cathodes with Fe3+/4+ and O2-/n- redox couples offer potential but face low initial Coulombic efficiency and significant voltage hysteresis. This study investigates Li-excess Fe-based disordered rock-salt (DRX) oxyfluorides (Li2Fe0.5M0.5O2F; M = Fe, Ti, Mn) using combined electrochemical/spectroscopic characterization and first-principles calculation. Oxygen-dependent Fe3+/4+ redox, related to Fe 3d-O 2p hybrid state, can be stabilized when combined with Mn3+/4+ redox in DRX structure owing to the unusual decrease in its redox potential. The moderately high charge transfer gap stabilizes Fe4+ against ligand-to-metal charge transfer (LMCT) on charge, reduces the amount of oxygen oxidation, thereby increasing Coulombic efficiency. On discharge, it allows metal-to-ligand charge transfer (MLCT) without substantial overpotential, reducing hysteresis in oxygen redox. The resulting composition exhibits high capacity (309 mAh g(-1)) and energy density (998 Wh kg(-1)), providing insights for next-generation Ni- and Co-free cathode materials.-
dc.languageEnglish-
dc.publisherJohn Wiley & Sons Ltd.-
dc.titleStabilization of Oxygen-Dependent Fe3+/4+ Redox in Li-Excess DRX Cathode Exhibiting Anionic Redox via Transition Metal Combination-
dc.typeArticle-
dc.identifier.doi10.1002/adfm.202312401-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Functional Materials, v.34, no.14-
dc.citation.titleAdvanced Functional Materials-
dc.citation.volume34-
dc.citation.number14-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001129645400001-
dc.identifier.scopusid2-s2.0-85180245427-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusFE-SUBSTITUTED LI2MNO3-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusELECTRONIC-STRUCTURE-
dc.subject.keywordPlusLITHIUM BATTERIES-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusELECTROCHEMISTRY-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusORIGIN-
dc.subject.keywordAuthorCoulombic efficiency-
dc.subject.keywordAuthordisordered rock-salt-
dc.subject.keywordAuthorFe-based cathodes-
dc.subject.keywordAuthorLi-ion batteries-
dc.subject.keywordAuthoroxygen redox-
dc.subject.keywordAuthorvoltage hysteresis-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE