Full metadata record

DC Field Value Language
dc.contributor.authorKalyoncuoglu, Burcu-
dc.contributor.authorOzgul, Metin-
dc.contributor.authorAltundag, Sebahat-
dc.contributor.authorAltin, Emine-
dc.contributor.authorMoeez, Iqra-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorArshad, Muhammad-
dc.contributor.authorAydin, Mustafa Goktan-
dc.contributor.authorDepci, Tolga-
dc.contributor.authorAltin, Serdar-
dc.contributor.authorSahinbay, Sevda-
dc.date.accessioned2024-01-19T08:02:43Z-
dc.date.available2024-01-19T08:02:43Z-
dc.date.created2023-12-28-
dc.date.issued2023-12-
dc.identifier.issn2574-0962-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113028-
dc.description.abstractThe key challenges of Na-ion batteries are to design structurally stable electrodes and reach high-enough capacities with full-cells. In this study, we report the positive effects of Ag substitution/addition to Na0.67MnO2. We determined that some of the intended Ag was incorporated into the structure, while the rest remained in metallic form. Ag substitution/addition increases the capacity (208 mA h/g at C/3 rate) and improves the cycle life of Na0.67MnO2 (42% capacity fade with 100 cycles) in half-cells. We attribute these results to an enlarged interlayer spacing due to the large ionic radius of Ag, a suppressed Jahn-Teller effect due to the reduced number of Mn3+ ions, and an increased electrical conductivity due to the presence of metallic Ag. We also produced full-cells with an electrochemically presodiated hard carbon anode. We reached a very high initial capacity of 190 mA h/g at the C/3 rate, showing that Ag substituted/added Na0.67MnO2 is a promising candidate for commercialization of Na-ion batteries.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleHigh-Performance Ag-Doped Na0.67MnO2 Cathode: Operando XRD Study and Full-Cell Performance Analysis with Presodiated Anode-
dc.typeArticle-
dc.identifier.doi10.1021/acsaem.3c02134-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Energy Materials, v.6, no.23, pp.11993 - 12002-
dc.citation.titleACS Applied Energy Materials-
dc.citation.volume6-
dc.citation.number23-
dc.citation.startPage11993-
dc.citation.endPage12002-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001123856000001-
dc.identifier.scopusid2-s2.0-85179170682-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusSODIUM-
dc.subject.keywordPlusCO-
dc.subject.keywordPlusSUBSTITUTION-
dc.subject.keywordPlusPHASE-
dc.subject.keywordPlusNI-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusOXIDES-
dc.subject.keywordPlusOXYGEN-
dc.subject.keywordPlusMG-
dc.subject.keywordAuthorNa-ion cathode-
dc.subject.keywordAuthorP2 type cathode-
dc.subject.keywordAuthorNa0.67MnO2-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE