Full metadata record

DC Field Value Language
dc.contributor.authorYu, Hayoung-
dc.contributor.authorKim, Jeong-Gil-
dc.contributor.authorLee, Dong-Myeong-
dc.contributor.authorLee, Sungju-
dc.contributor.authorHan, Min Gook-
dc.contributor.authorPark, Ji-Woon-
dc.contributor.authorKim, Seung Min-
dc.contributor.authorKim, Nam Dong-
dc.contributor.authorJeong, Hyeon Su-
dc.date.accessioned2024-01-19T08:03:03Z-
dc.date.available2024-01-19T08:03:03Z-
dc.date.created2023-12-21-
dc.date.issued2024-02-
dc.identifier.issn1614-6832-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113042-
dc.description.abstractFiber-type solid-state supercapacitors (FSSCs) are gaining traction as wearable energy storage devices, given their adaptability akin to traditional fibers. Carbon nanotube fibers (CNTFs) generated via a liquid crystalline (LC) wet-spinning process demonstrate outstanding electrical conductivity, mechanical strength, and flexibility. However, their intrinsic "defect-free" sp2 carbon surface restricts immediate FSSC application, limited by lower specific surface area and scant pseudocapacitive sites. This study develops LC-spun CNTFs with inherent electrochemical activity, eliminating the need for post-processing or additional active materials, a requirement typically essential in most previous research. This advancement arises from the wet-spinning of functionalized CNTs from a LC solution with an exceptionally high concentration of 160 mg mL-1, facilitated by the manipulation of the LC phase transition range. The resultant CNTFs exhibit a refined internal structure, yielding an electrical conductivity of 1.9 MS m-1 and a mechanical strength of 0.93 GPa. Simultaneously, they demonstrate inherent electrical energy storage capabilities with a specific capacitance of 139.4 F g-1 and a volumetric capacitance of 192.4 F cm-3 at 0.5 A g-1. This innovation signifies a step forward in the potential for mass production without the burden of additional materials and steps. A high-performance, fiber-type, solid-state supercapacitor is developed using functionalized CNTFs, which are fabricated by the wet-spinning of their liquid crystal phase. These fibers not only possess exceptional physical properties but also exhibit inherent electrochemical activity. The active-material-free energy storage device in this study underscores the potential for efficient mass production of fiber-type energy storage electrodes.image-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.titleActive Material-Free Continuous Carbon Nanotube Fibers with Unprecedented Enhancement of Physicochemical Properties for Fiber-Type Solid-State Supercapacitors-
dc.typeArticle-
dc.identifier.doi10.1002/aenm.202303003-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Energy Materials, v.14, no.6-
dc.citation.titleAdvanced Energy Materials-
dc.citation.volume14-
dc.citation.number6-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001114974700001-
dc.identifier.scopusid2-s2.0-85178939201-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusYARN-
dc.subject.keywordAuthorcarbon nanotube fibers-
dc.subject.keywordAuthorfiber-type solid-state supercapacitors-
dc.subject.keywordAuthorliquid crystal-
dc.subject.keywordAuthorwet-spinning-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE