Full metadata record

DC Field Value Language
dc.contributor.authorMin, Jihong-
dc.contributor.authorSeo, Haewon-
dc.contributor.authorShin, Jisu-
dc.contributor.authorPark, Mi Young-
dc.contributor.authorPark, Sun-Young-
dc.contributor.authorChoi, Haneul-
dc.contributor.authorPark, Soohyung-
dc.contributor.authorYang, Sungeun-
dc.contributor.authorChang, Hye Jung-
dc.contributor.authorHong, Jongsup-
dc.contributor.authorYoon, Kyung Joong-
dc.date.accessioned2024-01-19T08:03:33Z-
dc.date.available2024-01-19T08:03:33Z-
dc.date.created2023-11-17-
dc.date.issued2023-12-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113056-
dc.description.abstractAtomically dispersed catalysts provide excellent catalytic properties and atom utilization efficiency, but their high-temperature application has been limited by their low thermal stability. Herein, we report atomically dispersed Pt catalysts that are both highly active and thermally stable in fuel cells and electrolyzers operating above 600 degrees C. We developed a urea-based chemical synthetic method that strongly anchors atomic-scale Pt species on the surface of ceria nanoparticles and prevents their agglomeration at high temperatures. Doping the ceria with gadolinia further enhances their catalytic properties by increasing the oxygen vacancy concentration and promoting the oxygen exchange kinetics. This process enables in situ synthesis within the porous electrode of realistic solid oxide cells and significantly improves the power output and H2 production rate in fuel cell and electrolysis modes, respectively. Furthermore, this electrode stably operated without noticeable degradation during a long-term evaluation, thus proving the excellent thermal stability of atomically dispersed Pt/ceria catalysts. Atomically dispersed Pt catalysts supported on ceria nanoparticles are synthesized in situ and improve the performance and stability of high-temperature solid oxide cells for electricity and hydrogen production.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.titleAtomically dispersed platinum electrocatalysts supported on gadolinia-doped ceria nanoparticles for practical high-temperature solid oxide cells-
dc.typeArticle-
dc.identifier.doi10.1039/d3ta05534e-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Materials Chemistry A, v.11, no.46, pp.25298 - 25307-
dc.citation.titleJournal of Materials Chemistry A-
dc.citation.volume11-
dc.citation.number46-
dc.citation.startPage25298-
dc.citation.endPage25307-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001090134900001-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusIMPEDANCE SPECTROSCOPY-
dc.subject.keywordPlusFUEL-CELLS-
dc.subject.keywordPlusX-RAY-
dc.subject.keywordPlusANODE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusHYDROGEN-
dc.subject.keywordPlusSOFC-
dc.subject.keywordPlusMETAL-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE