Full metadata record

DC Field Value Language
dc.contributor.authorKim, Ji Hoon-
dc.contributor.authorKim, Jongmin-
dc.contributor.authorJang, Wooree-
dc.contributor.authorLee, Junwon-
dc.contributor.authorYang, Cheol-Min-
dc.date.accessioned2024-01-19T08:03:40Z-
dc.date.available2024-01-19T08:03:40Z-
dc.date.created2023-11-01-
dc.date.issued2023-12-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113062-
dc.description.abstractHerein, the successful fabrication of a high-performance Si-based composite Li-ion battery (LIB) anode, comprising a dual-carbon framework of reduced graphene oxide (r-GO) and oxidized single-walled carbon nanohorns (o-NHs), was demonstrated using a simple and scalable spray-drying process followed by heat treatment (h-s-GO/Si/NH). The r-GO nanosheets in the h-s-GO/Si/NH anode acted as a robust spherical frame-work that facilitated the mechanical and electrical connection between the carbon-coated Si (c-Si) nanoparticles, homogeneous dispersion of c-Si and o-NH nanoparticles, and suppression of the volume expansion and pulverization that occur during lithiation/delithiation. Additionally, the o-NH nanoparticles incorporated in the h-s- GO/Si/NH composite served as electrical bridges between the r-GO nanosheets, resulting in enhanced electrical conductivity and effortless Li-ion shuttling. The h-s-GO/Si/NH composite anode exhibited high electrochemical performance with a very high initial gravimetric charge capacity (2961 mAh g(-1) at 0.1 A g(-1)), stable initial Coulombic efficiency (80.6% at 0.2 A g(-1)), and high cycling stability (983 mAh g(-1) at 0.2 A g(-1) after 50 cycles). This study highlights the importance of the effective design of electrically conductive three-dimensional frameworks in Si-based composite anodes, which may contribute to the development of high-performance LIB anode materials.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleElectrical bridging effects of dual-carbon microsphere frameworks in Si-based composite anodes for high-performance Li-ion batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.apsusc.2023.158494-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplied Surface Science, v.641-
dc.citation.titleApplied Surface Science-
dc.citation.volume641-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001086385000001-
dc.identifier.scopusid2-s2.0-85172673149-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusCOATED SILICON NANOPARTICLES-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusNANOTUBE-
dc.subject.keywordAuthorGraphene oxide-
dc.subject.keywordAuthorSi-
dc.subject.keywordAuthorSingle-walled carbon nanohorn-
dc.subject.keywordAuthorLi-ion battery-
dc.subject.keywordAuthorAnode materials-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE