Full metadata record

DC Field Value Language
dc.contributor.authorJang, Hye Seong-
dc.contributor.authorJeong, Gyu Hyeon-
dc.contributor.authorLee, Hoon Ju-
dc.contributor.authorShin, Hyeon Suk-
dc.contributor.authorHwa, Yeongsik-
dc.contributor.authorChee, Sang-Soo-
dc.contributor.authorPaek, Sae Yane-
dc.contributor.authorKim, Jong Min-
dc.contributor.authorSon, Byeongseo-
dc.contributor.authorKang, Dongwoo-
dc.contributor.authorRyu, Gyeong Hee-
dc.date.accessioned2024-01-19T08:03:46Z-
dc.date.available2024-01-19T08:03:46Z-
dc.date.created2023-10-29-
dc.date.issued2023-12-
dc.identifier.issn2590-0498-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113067-
dc.description.abstractZnO nanosheets with nanograin distributions, high mesoporosity, and ultrathin thickness have garnered considerable attention owing to their intriguing properties, such as high surface-to-volume ratio and chemical reactivity. Although various methods for fabricating two-dimensional structures have been reported, the surfactant-assisted method is advantageous as it produces nanosheet structures at the water-air interface without affecting the crystal structure of the material. This study developed an innovative surfactant-assisted synthesis method to fabricate flower-like Zinc Oxide (f-ZnO) nanostructures. The synthesis, performed at a mild temperature of 70 degrees C, yields f-ZnO with high surface area-to-volume ratios and porous morphology. The f-ZnO demonstrates photoelectrochemical (PEC) performance due to increased interfacial contact with electrolytes and the formation of a wurtzite ZnO crystal structure. Additionally, f-ZnO exhibits sensitivity and selectivity as a hydrogen sulfide (H2S) gas sensor. This facile synthesis method opens new avenues for developing functional oxide nanostructures for sensors, catalysts, and energy storage systems.-
dc.languageEnglish-
dc.publisherElsevier-
dc.titleA general and facile approach to flower-like ZnO fabrication-
dc.typeArticle-
dc.identifier.doi10.1016/j.mtadv.2023.100424-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMaterials Today Advances, v.20-
dc.citation.titleMaterials Today Advances-
dc.citation.volume20-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001081524000001-
dc.identifier.scopusid2-s2.0-85170651435-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusMESOPOROUS SILICA NANOPARTICLES-
dc.subject.keywordPlusELECTRICAL-CONDUCTIVITY-
dc.subject.keywordPlusACTIVE-SITES-
dc.subject.keywordPlusMETAL-
dc.subject.keywordPlusNANOSPHERES-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusSUBSTRATE-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusSTRATEGY-
dc.subject.keywordPlusNANORODS-
dc.subject.keywordAuthorFlower-like ZnO-
dc.subject.keywordAuthorNanosheets-
dc.subject.keywordAuthorSurfactant molecules-
dc.subject.keywordAuthorSurfactant-assisted method-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE