Full metadata record

DC Field Value Language
dc.contributor.authorPark, Youngtae-
dc.contributor.authorHwang, Chang-Kyu-
dc.contributor.authorBang, Kihoon-
dc.contributor.authorHong, Doosun-
dc.contributor.authorNam, Hyobin-
dc.contributor.authorKwon, Soonho-
dc.contributor.authorYeo, Byung Chul-
dc.contributor.authorGo, Dohyun-
dc.contributor.authorAn, Jihwan-
dc.contributor.authorJu, Byeong-Kwon-
dc.contributor.authorKim, Sang Hoon-
dc.contributor.authorByun, Ji Young-
dc.contributor.authorLee, Seung Yong-
dc.contributor.authorKim, Jong Min-
dc.contributor.authorKim, Donghun-
dc.contributor.authorHan, Sang Soo-
dc.contributor.authorLee, Hyuck Mo-
dc.date.accessioned2024-01-19T08:03:55Z-
dc.date.available2024-01-19T08:03:55Z-
dc.date.created2023-09-21-
dc.date.issued2023-12-
dc.identifier.issn0926-3373-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113072-
dc.description.abstractDespite their potential promise, multicomponent materials have not been actively considered as catalyst mate-rials to date, mainly due to the massive compositional space. Here, targeting ternary electrocatalysts for fuel cells, we present a machine learning (ML)-driven catalyst screening protocol with the criteria of structural sta-bility, catalytic performance, and cost-effectiveness. This process filters out only 10 and 37 candidates out of over three thousand test materials in the alloy core@shell (X3Y@Z) for each cathode and anode of fuel cells. These candidates are potentially synthesizable, lower-cost and higher-performance than conventional Pt. A thin film of Cu3Au@Pt, one of the final candidates for oxygen reduction reactions, was experimentally fabricated, which indeed outperformed a Pt film as confirmed by the approximately 2-fold increase in kinetic current density with the 2.7-fold reduction in the Pt usage. This demonstration supports that our ML-driven design strategy would be useful for exploring general multicomponent systems and catalysis problems.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleMachine learning filters out efficient electrocatalysts in the massive ternary alloy space for fuel cells-
dc.typeArticle-
dc.identifier.doi10.1016/j.apcatb.2023.123128-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplied Catalysis B: Environmental, v.339-
dc.citation.titleApplied Catalysis B: Environmental-
dc.citation.volume339-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001060278200001-
dc.identifier.scopusid2-s2.0-85165880160-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusOXYGEN REDUCTION ACTIVITY-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusDISCOVERY-
dc.subject.keywordPlusPLATINUM-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusCATALYST-
dc.subject.keywordPlusAG-
dc.subject.keywordAuthorFuel cells-
dc.subject.keywordAuthorElectrocatalyst-
dc.subject.keywordAuthorTernary alloy-
dc.subject.keywordAuthorMachine learning-
dc.subject.keywordAuthorCatalyst design protocol-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE