Full metadata record

DC Field Value Language
dc.contributor.authorPark, Young Sun-
dc.contributor.authorJang, Gyumin-
dc.contributor.authorSohn, Inkyu-
dc.contributor.authorLee, Hyungsoo-
dc.contributor.authorTan, Jeiwan-
dc.contributor.authorYun, Juwon-
dc.contributor.authorMa, Sunihl-
dc.contributor.authorLee, Jeongyoub-
dc.contributor.authorLee, Chan Uk-
dc.contributor.authorMoon, Subin-
dc.contributor.authorIm, Hayoung-
dc.contributor.authorChung, Seung-Min-
dc.contributor.authorYu, Seungho-
dc.contributor.authorKim, Hyungjun-
dc.contributor.authorMoon, Jooho-
dc.date.accessioned2024-01-19T08:04:06Z-
dc.date.available2024-01-19T08:04:06Z-
dc.date.created2023-04-27-
dc.date.issued2023-12-
dc.identifier.issn2637-9368-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113080-
dc.description.abstractOxygen evolution reaction (OER) as a half-anodic reaction of water splitting hinders the overall reaction efficiency owing to its thermodynamic and kinetic limitations. Iodide oxidation reaction (IOR) with low thermodynamic barrier and rapid reaction kinetics is a promising alternative to the OER. Herein, we present a molybdenum disulfide (MoS2) electrocatalyst for a high-efficiency and remarkably durable anode enabling IOR. MoS2 nanosheets deposited on a porous carbon paper via atomic layer deposition show an IOR current density of 10 mA cm(-2) at an anodic potential of 0.63 V with respect to the reversible hydrogen electrode owing to the porous substrate as well as the intrinsic iodide oxidation capability of MoS2 as confirmed by theoretical calculations. The lower positive potential applied to the MoS2-based heterostructure during IOR electrocatalysis prevents deterioration of the active sites on MoS2, resulting in exceptional durability of 200 h. Subsequently, we fabricate a two-electrode system comprising a MoS2 anode for IOR combined with a commercial Pt@C catalyst cathode for hydrogen evolution reaction. Moreover, the photovoltaic-electrochemical hydrogen production device comprising this electrolyzer and a single perovskite photovoltaic cell shows a record-high current density of 21 mA cm(-2) at 1 sun under unbiased conditions.-
dc.languageEnglish-
dc.publisherWiley-
dc.titleEfficient solar fuel production enabled by an iodide oxidation reaction on atomic layer deposited MoS2-
dc.typeArticle-
dc.identifier.doi10.1002/cey2.366-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCarbon Energy, v.5, no.12-
dc.citation.titleCarbon Energy-
dc.citation.volume5-
dc.citation.number12-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000962836100001-
dc.identifier.scopusid2-s2.0-85152016795-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusTRANSITION-METAL DICHALCOGENIDES-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordPlusCARBON-
dc.subject.keywordAuthoriodide oxidation reaction-
dc.subject.keywordAuthormolybdenum sulfide-
dc.subject.keywordAuthorphotovoltaic-electrochemical hydrogen production-
dc.subject.keywordAuthorsolar hydrogen-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE