Full metadata record

DC Field Value Language
dc.contributor.authorPark, Jong Hyun-
dc.contributor.authorChoi, Changhoon-
dc.contributor.authorPark, Jung Been-
dc.contributor.authorYu, Seungho-
dc.contributor.authorKim, Dong-Wan-
dc.date.accessioned2024-01-19T08:04:20Z-
dc.date.available2024-01-19T08:04:20Z-
dc.date.created2023-12-21-
dc.date.issued2024-02-
dc.identifier.issn1614-6832-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113093-
dc.description.abstractAqueous zinc-ion batteries (AZIBs) have recently gained significant attention for grid-scale energy storage applications owing to their high intrinsic energy density, low cost, and environmental benignity. Nevertheless, uncontrolled Zn dendrite accumulation, H-2 gas generation, and inevitable corrosion resulting from intricate water-induced side-reactions remain the main hurdles to AZIB commercialization. To overcome these problems, it is imperative to develop easy-to-handle strategies for the construction of versatile artificial protective layers (APL) on Zn surfaces. Inspired by the suppressed HER and anti-corrosive properties of zinc silicate (Zn2SiO4), this study rationally designed a novel APL consisting of Zn2SiO4 nanospheres and decorated surface-modified carbon nanotube (CNT) to produce a stable and durable Zn anode (C-ZSL@Zn). The C-ZSL layer simultaneously improved Zn2+ transport kinetics and the Zn2+ de-solvation effect, maintained electrically insulating properties, and uniformized Zn2+ flux on the Zn surface, synergistically enabling corrosion-free and dendrite-free Zn plating/stripping behavior on C-ZSL@Zn. Consequently, the C-ZSL@Zn achieved prolonged lifespans of approximate to 1600 (at 1 mA cm(-2)) and approximate to 1100 h (at a high depth of discharge of approximate to 51.24%) with ultralow voltage hysteresis in symmetric cells, together with improved cycling stability for coin- and pouch-type Zn||alpha-MnO2 full-cells. This study creates a new avenue for constructing stable APL@Zn anodes for practical applications.-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.titleFortifying Zinc Metal Anodes against Uncontrollable Side-Reactions and Dendrite Growth for Practical Aqueous Zinc Ion Batteries: A Novel Composition of Anti-Corrosive and Zn2+ Regulating Artificial Protective Layer-
dc.typeArticle-
dc.identifier.doi10.1002/aenm.202302493-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Energy Materials, v.14, no.5-
dc.citation.titleAdvanced Energy Materials-
dc.citation.volume14-
dc.citation.number5-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001110751400001-
dc.identifier.scopusid2-s2.0-85177849136-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusSOLID-ELECTROLYTE INTERPHASE-
dc.subject.keywordPlusCORROSION INHIBITION-
dc.subject.keywordPlusSURFACE-AREA-
dc.subject.keywordPlusSILICATE-
dc.subject.keywordPlusCHALLENGES-
dc.subject.keywordPlusCHEMISTRY-
dc.subject.keywordPlusZN2SIO4-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusOXYGEN-
dc.subject.keywordAuthoranti-corrosion-
dc.subject.keywordAuthoraqueous zinc ion batteries-
dc.subject.keywordAuthorartificial protective layer-
dc.subject.keywordAuthorzinc dendrites-
dc.subject.keywordAuthorzinc metal anodes-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE