Full metadata record

DC Field Value Language
dc.contributor.authorLee, Chanyong-
dc.contributor.authorChae, Kyungjin-
dc.contributor.authorKo, Yohan-
dc.contributor.authorLee, Changhyun-
dc.contributor.authorKim, Taemin-
dc.contributor.authorPark, Seaeun-
dc.contributor.authorJung, Moo Young-
dc.contributor.authorKim, Jinhyoung-
dc.contributor.authorYun, Yong Ju-
dc.contributor.authorLee, Minoh-
dc.contributor.authorJun, Yongseok-
dc.date.accessioned2024-01-19T08:04:28Z-
dc.date.available2024-01-19T08:04:28Z-
dc.date.created2023-12-21-
dc.date.issued2023-11-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113101-
dc.description.abstractThe cesium lead iodide (CsPbI3) perovskite solar cell possesses a wide band gap ranging from 1.65 to 1.75 eV, which is suitable for integration into a tandem structure along with a low-band-gap silicon solar cell. Moreover, CsPbI(3 )has received considerable attention as a potential solution for the prevalent issues of low thermal stability of organic-inorganic perovskite solar cells and phase segregation encountered in conventional mixed halide wide-band-gap perovskite solar cells. Through the implementation of volatile additives, CsPbI3 has demonstrated substantial advancements in efficiency, process temperature, and stability. This study introduces a novel approach for barium (Ba)-doping by spraying an antisolvent containing barium bis-(trifluoromethanesulfonimide) during the spin-coating process. By incorporating Ba2+ through this spraying technique, the formation of the delta phase in CsPbI3 is significantly suppressed; thereby, a power conversion efficiency of 18.56% is achieved, and a remarkable 93% of the initial efficiency is maintained after 600 h.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titlePhase Stability Improvement of a γ-CsPbI3 Perovskite Solar Cell Utilizing a Barium Bis(trifluoromethanesulfonimide) Solution-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.3c10668-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.15, no.44, pp.51050 - 51058-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume15-
dc.citation.number44-
dc.citation.startPage51050-
dc.citation.endPage51058-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001102160800001-
dc.identifier.scopusid2-s2.0-85176495393-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusLEAD HALIDE PEROVSKITES-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusALPHA-CSPBI3-
dc.subject.keywordPlusDEGRADATION-
dc.subject.keywordAuthorinorganic perovskite solar cell-
dc.subject.keywordAuthorgamma-CsPbI3-
dc.subject.keywordAuthorphase stability-
dc.subject.keywordAuthorBa-doping-
dc.subject.keywordAuthordoping viaantisolvent-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE