Full metadata record

DC Field Value Language
dc.contributor.authorPark, Dohyub-
dc.contributor.authorChoi, Minsu-
dc.contributor.authorKim, Minjun-
dc.contributor.authorPark, Jun-Ho-
dc.contributor.authorKim, Hyung-Seok-
dc.contributor.authorChoi, Wonchang-
dc.date.accessioned2024-01-19T08:30:55Z-
dc.date.available2024-01-19T08:30:55Z-
dc.date.created2023-09-07-
dc.date.issued2023-11-
dc.identifier.issn0306-2619-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113151-
dc.description.abstractSodium has the advantage of being more abundant than lithium. Therefore, sodium-ion batteries (SIB) have attracted attention as next-generation secondary batteries to replace lithium-ion batteries (LIB). NaNixFeyMnzO2 (x + y + z = 1), an O3-type sodium-based layered cathode material, is considered a promising cathode material because sodium can occupy a significant portion of the O3-type structure. However, the rate capability, cycle life, and capacity reduction are obstacles to actual application because of the low Na-ion conductivity caused by the O3-type sodium structure characteristics and inherent moisture vulnerability. In this study, a simple ethanol-based precursor pre-coating process using a fast Na-ion conductive material was designed to effectively improve the electrochemical performance of the cathode material. Na3Zr2Si2PO12 with a NASICON structure, a high-ion-conductivity phosphate-based solid electrolyte, was used as the coating material. In addition, a uniform coating layer was formed on the surface of the cathode using polyacrylic acid, a polymer material with a driving force for the coating precursor.-
dc.languageEnglish-
dc.publisherPergamon Press Ltd.-
dc.titleMethodically controlled Na3Zr2Si2PO12 solid electrolyte nano-coating layer on O3-type cathodes via multifunctional polyacrylic acid for high-performance and moisture stable sodium-ion batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.apenergy.2023.121639-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplied Energy, v.349-
dc.citation.titleApplied Energy-
dc.citation.volume349-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001054729700001-
dc.identifier.scopusid2-s2.0-85166183720-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusPOLY(ACRYLIC ACID)-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusDEGRADATION-
dc.subject.keywordPlusCHEMISTRY-
dc.subject.keywordPlusCAPACITY-
dc.subject.keywordPlusP2-TYPE-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordAuthorSIB cathode-
dc.subject.keywordAuthorO3-type layered structure-
dc.subject.keywordAuthorNaNixFeyMnzO2 (x + y + z=1)-
dc.subject.keywordAuthorNa3Zr2Si2PO12-
dc.subject.keywordAuthorPolyacrylic acid-
dc.subject.keywordAuthorNASICON-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE