Full metadata record

DC Field Value Language
dc.contributor.authorChung, Wonsuk-
dc.contributor.authorKim, Sunwoo-
dc.contributor.authorAl-Hunaidy, Ali S.-
dc.contributor.authorImran, Hasan-
dc.contributor.authorJamal, Aqil-
dc.contributor.authorLee, Jay H.-
dc.date.accessioned2024-01-19T08:31:48Z-
dc.date.available2024-01-19T08:31:48Z-
dc.date.created2023-10-29-
dc.date.issued2023-10-
dc.identifier.issn0098-1354-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113197-
dc.description.abstractCarbon capture and utilization (CCU) can be a pertinent solution to avoid millions of tons of carbon emission. The challenge is to identify, among numerous available options of carbon sources capture/utilization technologies, and products, the CCU pathways with best economic and/or CO2 reduction potential. In this work, we propose a novel framework for identifying sustainable CCU pathways, i.e., combinations of sources, processes, and products, using a superstructure based on state-task network (STN) representation. STN allows incorporation of nonlinear models including first-principles or surrogate models into the superstructure representation of potential CCU pathways. The proposed framework solves the superstructure optimization problem of mixed-integer nonlinear programming (MINLP) by introducing logic-based outer approximation (LOA), to reduce the computational time and improve the solvability greatly. A case study using a sizable CCU superstructure demonstrates that LOA can reduce the computational time from hours to minutes while identifying any sustainable pathway from a superstructure with highly nonlinear surrogate models.-
dc.languageEnglish-
dc.publisherPergamon Press Ltd.-
dc.titleIdentification of sustainable carbon capture and utilization (CCU) pathways using state-task network representation-
dc.typeArticle-
dc.identifier.doi10.1016/j.compchemeng.2023.108408-
dc.description.journalClass1-
dc.identifier.bibliographicCitationComputers & Chemical Engineering, v.178-
dc.citation.titleComputers & Chemical Engineering-
dc.citation.volume178-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001075741000001-
dc.identifier.scopusid2-s2.0-85170703007-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusSTRUCTURAL OPTIMIZATION APPROACH-
dc.subject.keywordPlusGLOBAL OPTIMIZATION-
dc.subject.keywordPlusOPTIMUM DESIGN-
dc.subject.keywordPlusASSESSMENT FRAMEWORK-
dc.subject.keywordPlusGENERAL ALGORITHM-
dc.subject.keywordPlusBATCH-OPERATIONS-
dc.subject.keywordPlusCO2 CAPTURE-
dc.subject.keywordPlusGAS-
dc.subject.keywordPlusMETHODOLOGY-
dc.subject.keywordPlusUNCERTAINTY-
dc.subject.keywordAuthorCarbon capture and utilization-
dc.subject.keywordAuthorSustainable pathway-
dc.subject.keywordAuthorSuperstructure-
dc.subject.keywordAuthorState -task network representation-
dc.subject.keywordAuthorMixed-inter nonlinear programming-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE