Full metadata record

DC Field Value Language
dc.contributor.authorKang, Seongkoo-
dc.contributor.authorChoi, Dayeon-
dc.contributor.authorLee, Hakwoo-
dc.contributor.authorChoi, Byungjin-
dc.contributor.authorKang, Yong-Mook-
dc.date.accessioned2024-01-19T08:32:45Z-
dc.date.available2024-01-19T08:32:45Z-
dc.date.created2023-07-20-
dc.date.issued2023-10-
dc.identifier.issn0935-9648-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113242-
dc.description.abstractLi-rich cathodes are extensively investigated as their energy density is superior to Li stoichiometric cathode materials. In addition to the transition metal redox, this intriguing electrochemical performance originates from the redox reaction of the anionic sublattice. This new redox process, the so-called anionic redox or, more directly, oxygen redox in the case of oxides, almost doubles the energy density of Li-rich cathodes compared to conventional cathodes. Numerous theoretical and experimental investigations have thoroughly established the current understanding of the oxygen redox of Li-rich cathodes. However, different reports are occasionally contradictory, indicating that current knowledge remains incomplete. Moreover, several practical issues still hinder the real-world application of Li-rich cathodes. As these issues are related to phenomena resulting from the electronic to atomic evolution induced by unstable oxygen redox, a fundamental multiscale understanding is essential for solving the problem. In this review, the current mechanistic understanding of oxygen redox, the origin of the practical problems, and how current studies tackle the issues are summarized.-
dc.languageEnglish-
dc.publisherWILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.titleA Mechanistic Insight into the Oxygen Redox of Li-Rich Layered Cathodes and their Related Electronic/Atomic Behaviors Upon Cycling-
dc.typeArticle-
dc.identifier.doi10.1002/adma.202211965-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Materials, v.35, no.43-
dc.citation.titleAdvanced Materials-
dc.citation.volume35-
dc.citation.number43-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001019958000001-
dc.identifier.scopusid2-s2.0-85163681305-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeReview-
dc.subject.keywordPlusLITHIUM-ION BATTERIES-
dc.subject.keywordPlusX-RAY-DIFFRACTION-
dc.subject.keywordPlusANIONIC REDOX-
dc.subject.keywordPlusVOLTAGE HYSTERESIS-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusLOCAL-STRUCTURE-
dc.subject.keywordPlusELECTROCHEMICAL ACTIVITY-
dc.subject.keywordPlusOXIDE CATHODES-
dc.subject.keywordPlusMN-
dc.subject.keywordPlusINTERCALATION-
dc.subject.keywordAuthorLi-rich cathodes-
dc.subject.keywordAuthoroxygen redox-
dc.subject.keywordAuthoroxygen reorganization-
dc.subject.keywordAuthortransition metal migration-
dc.subject.keywordAuthorvoltage hysteresis-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE