Full metadata record

DC Field Value Language
dc.contributor.authorJang, Segeun-
dc.contributor.authorKang, Yun Sik-
dc.contributor.authorKim, Dohoon-
dc.contributor.authorPark, Subin-
dc.contributor.authorSeol, Changwook-
dc.contributor.authorLee, Sungchul-
dc.contributor.authorKim, Sang Moon-
dc.contributor.authorYoo, Sung Jong-
dc.date.accessioned2024-01-19T08:32:56Z-
dc.date.available2024-01-19T08:32:56Z-
dc.date.created2023-03-30-
dc.date.issued2023-10-
dc.identifier.issn0935-9648-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113250-
dc.description.abstractOver the past few decades, considerable advances have been achieved in polymer electrolyte membrane fuel cells (PEMFCs) based on the development of material technology. Recently, an emerging multiscale architecturing technology covering nanometer, micrometer, and millimeter scales has been regarded as an alternative strategy to overcome the hindrance to achieving high-performance and reliable PEMFCs. This review summarizes the recent progress in the key components of PEMFCs based on a novel architecture strategy. In the first section, diverse architectural methods for patterning the membrane surface with random, single-scale, and multiscale structures as well as their efficacy for improving catalyst utilization, charge transport, and water management are discussed. In the subsequent section, the electrode structures designed with 1D and 3D multiscale structures to enable low Pt usage, improve oxygen transport, and achieve high electrode durability are elucidated. Finally, recent advances in the architectured transport layer for improving mass transportation including pore gradient, perforation, and patterned wettability for gas diffusion layer and 3D structured/engineered flow fields are described.-
dc.languageEnglish-
dc.publisherWILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.titleMultiscale Architectured Membranes, Electrodes, and Transport Layers for Next-Generation Polymer Electrolyte Membrane Fuel Cells-
dc.typeArticle-
dc.identifier.doi10.1002/adma.202204902-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Materials, v.35, no.43-
dc.citation.titleAdvanced Materials-
dc.citation.volume35-
dc.citation.number43-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000946680600001-
dc.identifier.scopusid2-s2.0-85146287083-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeReview-
dc.subject.keywordPlusPATTERNED WETTABILITY-
dc.subject.keywordPlusFACILE PREPARATION-
dc.subject.keywordPlusWATER MANAGEMENT-
dc.subject.keywordPlusNAFION MEMBRANES-
dc.subject.keywordPlusBIPOLAR PLATES-
dc.subject.keywordPlusGAS-DIFFUSION LAYER-
dc.subject.keywordPlusULTRATHIN CATALYST LAYER-
dc.subject.keywordPlusOXYGEN REDUCTION-
dc.subject.keywordPlusNANOTUBE ARRAYS-
dc.subject.keywordPlusMASS-TRANSPORT-
dc.subject.keywordAuthorelectrodes-
dc.subject.keywordAuthormembranes-
dc.subject.keywordAuthormultiscale architecturing-
dc.subject.keywordAuthorpolymer electrolyte membrane fuel cells-
dc.subject.keywordAuthortransport layers-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE