Full metadata record

DC Field Value Language
dc.contributor.authorKu, Bonyoung-
dc.contributor.authorAhn, Hobin-
dc.contributor.authorLee, Seokjin-
dc.contributor.authorAhn, Jinho-
dc.contributor.authorChoi, Myeongeun-
dc.contributor.authorKang, Jungmin-
dc.contributor.authorPark, Hyunyoung-
dc.contributor.authorKim, Junseong-
dc.contributor.authorKim, A-Yeon-
dc.contributor.authorJung, Hun-Gi-
dc.contributor.authorYoo, Jung- Keun-
dc.contributor.authorKim, Jongsoon-
dc.date.accessioned2024-01-19T08:33:32Z-
dc.date.available2024-01-19T08:33:32Z-
dc.date.created2023-10-29-
dc.date.issued2023-09-
dc.identifier.issn2405-8297-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113280-
dc.description.abstractSluggish kinetics and structural instability caused by oxygen redox can lead to poor electrochemical performance of cathode materials, resulting in a much lower operating voltage during discharging than charging (especially at high current densities) and poor power-capability. Additionally, undesirable phase transitions during charge/ discharge negatively affect the electrochemical performance of oxygen-redox-based P2-type Mn-based layered oxide cathodes. In this study, we demonstrate the successful stabilization of oxygen redox in P2-type Mn-based layered oxide cathodes through the synergy of Cu-Co. Particularly, the discharge operation voltage and energy density during fast charging are significantly enhanced. The average discharge voltage difference of P2-type Na0.67[Cu0.2Co0.2Mn0.6]O2 between 10 and 1000 mA g-1 is approximately-0.18 V, respectively, which is distinctly different from the case of P2-type Na0.67[Cu0.2Mn0.8]O2 showing differences of approximately-0.36 V under the same conditions. Moreover, after 100 cycles, the discharge capacity of P2-type Na0.67[Cu0.2Co0.2Mn0.6] O2 with oxygen redox is retained to-93% of the initial capacity, due to both a small volume change during charge/discharge (-0.6%) and successful suppression of undesirable phase transition of P2-OP4. The outcomes of this study underscore the viability of employing oxygen-redox-based P2-type Na-layered oxide as a reasonable method for achieving exceptional high-rate and high-voltage performance.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleStable high-voltage operation of oxygen redox in P2-type Na-layered oxide cathode at fast discharging via enhanced kinetics-
dc.typeArticle-
dc.identifier.doi10.1016/j.ensm.2023.102952-
dc.description.journalClass1-
dc.identifier.bibliographicCitationEnergy Storage Materials, v.62-
dc.citation.titleEnergy Storage Materials-
dc.citation.volume62-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001080624600001-
dc.identifier.scopusid2-s2.0-85170411583-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusLI-ION-
dc.subject.keywordPlusANIONIC REDOX-
dc.subject.keywordPlusBAND-GAPS-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusSUBSTITUTION-
dc.subject.keywordPlusBATTERIES-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusCHALLENGES-
dc.subject.keywordPlusCHEMISTRY-
dc.subject.keywordAuthorNa -ion batteries-
dc.subject.keywordAuthorOxygen redox-
dc.subject.keywordAuthorStabilization-
dc.subject.keywordAuthorHigh voltage-
dc.subject.keywordAuthorFirst-principle calculation-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE