Full metadata record

DC Field Value Language
dc.contributor.authorBaek, Kyungeun-
dc.contributor.authorLee, Wang-Geun-
dc.contributor.authorIm, Eunmi-
dc.contributor.authorHa, Jee Ho-
dc.contributor.authorAhn, Seokhoon-
dc.contributor.authorKim, Youngsik-
dc.contributor.authorChoi, Yeonsik-
dc.contributor.authorKang, Seok Ju-
dc.date.accessioned2024-01-19T08:34:10Z-
dc.date.available2024-01-19T08:34:10Z-
dc.date.created2023-09-27-
dc.date.issued2023-09-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113312-
dc.description.abstractLithium (Li) metal is a promising anode material for high-energy-density Li batteries due to its high specific capacity. However, the uneven deposition of Li metal causes significant volume expansion and safety concerns. Here, we investigate the impact of a gradient-infused Li-metal anode using silver (Ag)-decorated carbonized cellulose fibers (Ag@CC) as a three-dimensional (3D) current collector. The loading level of the gradient-infused Li-metal anode is controlled by the thermal infusion time of molten Li. In particular, a 5 s infusion time in the Ag@CC current collector creates an appropriate space with a lithiophilic surface, resulting in improved cycling stability and a reduced volume expansion rate. Moreover, integrating a 5 s Ag@CC anode with a high-capacity cathode demonstrates superior electrochemical performance with minimal volume expansion. This suggests that a gradient-infused Li-metal anode using Ag@CC as a 3D current collector represents a novel design strategy for Li-metal-based high-capacity Li-ion batteries.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleGradient Lithium Metal Infusion in Ag-Decorated Carbon Fibers for High-Capacity Lithium Metal Battery Anodes-
dc.typeArticle-
dc.identifier.doi10.1021/acs.nanolett.3c02229-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNano Letters, v.23, no.18, pp.8515 - 8523-
dc.citation.titleNano Letters-
dc.citation.volume23-
dc.citation.number18-
dc.citation.startPage8515-
dc.citation.endPage8523-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001060997900001-
dc.identifier.scopusid2-s2.0-85171683201-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusSTABLE HOST-
dc.subject.keywordPlusLI METAL-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusELECTRODEPOSITION-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordPlusTORTUOSITY-
dc.subject.keywordPlusGENERATION-
dc.subject.keywordPlusCOLLECTOR-
dc.subject.keywordPlusDENSITY-
dc.subject.keywordAuthorlithium metal-
dc.subject.keywordAuthorgradient-infused anode-
dc.subject.keywordAuthorcyclingstability-
dc.subject.keywordAuthorvolume expansion-
dc.subject.keywordAuthorhigh-capacity lithium-ionbatteries-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE