Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Gwan Hyun-
dc.contributor.authorSelvam, N. Clament Sagaya-
dc.contributor.authorKim, Hyunwoo-
dc.contributor.authorPark, Young Sang-
dc.contributor.authorJung, Jiyoon-
dc.contributor.authorGyun, Myeong-
dc.contributor.authorJeon, Hyo Sang-
dc.contributor.authorLee, Albert S.-
dc.contributor.authorYoon, Won-Sub-
dc.contributor.authorYoo, Pil J.-
dc.date.accessioned2024-01-19T08:34:19Z-
dc.date.available2024-01-19T08:34:19Z-
dc.date.created2023-09-07-
dc.date.issued2023-09-
dc.identifier.issn0926-3373-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113318-
dc.description.abstractThe design of heterointerface-structured catalysts with tunable active sites is critical to address the activity and durability challenges of water oxidation process. In this study, a novel interfacial engineering strategy based on the anionic diffusion-limited Kirkendall effect (KE) was employed for the synthesis of a FeCo/FeCoP with highvalent Fe (Fe+3.18) sites. Specifically, a model system of the FeCo/FeCoP heterointerface was obtained through the phosphidation of carbon-encapsulated FeCo nanoparticles. The highly efficient and stable oxygen evolution reaction (OER) performance of the FeCo/FeCoP catalyst was demonstrated in an anion-exchange membrane water electrolyser (12.26 A cm-2 at 2.0 V). Through density functional theory calculations, the high-valent Fe sites in the FeCo/FeCoP heterointerface were found to balance the adsorption energetics of the OER intermediates. The structure-oxidation state-OER activity correlation of the FeCo/FeCoP catalysts demonstrated herein emphasises the significance of understanding the water oxidation chemistry of heterointerface-structured catalysts for their potential applications in different energy conversion devices.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleHigh-valent metal site incorporated heterointerface catalysts for high-performance anion-exchange membrane water electrolysers-
dc.typeArticle-
dc.identifier.doi10.1016/j.apcatb.2023.122816-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplied Catalysis B: Environmental, v.333-
dc.citation.titleApplied Catalysis B: Environmental-
dc.citation.volume333-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001053517900001-
dc.identifier.scopusid2-s2.0-85153623993-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusOXYGEN EVOLUTION REACTION-
dc.subject.keywordPlusFE-SITES-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusELECTROCATALYSIS-
dc.subject.keywordPlusNANOCRYSTALS-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusNIFE-
dc.subject.keywordAuthorHeterointerface catalysts-
dc.subject.keywordAuthorHigh -valent metal sites-
dc.subject.keywordAuthorKirkendall effect-
dc.subject.keywordAuthorOxygen evolution reaction-
dc.subject.keywordAuthorAnion -exchange membrane water electrolyser-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE