Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ahmad, Sheraz | - |
dc.contributor.author | Din, H. U. | - |
dc.contributor.author | Sabir, S. S. Ullah | - |
dc.contributor.author | Amin, B. | - |
dc.date.accessioned | 2024-01-19T09:00:07Z | - |
dc.date.available | 2024-01-19T09:00:07Z | - |
dc.date.created | 2023-08-31 | - |
dc.date.issued | 2023-09 | - |
dc.identifier.issn | 2516-0230 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/113331 | - |
dc.description.abstract | The vertical integration of two-dimensional (2D) materials through weak van der Waals (vdW) interactions is gaining tremendous attention for application in nanotechnology and photovoltaics. Here, we performed first-principles study of the electronic band structure, optical and photocatalytic properties of vertically stacked heterostructures based on boron pnictides BX (X = As, P) and SiS monolayers. Both heterobilayers possess a stable geometry and reveal type I band alignment with a direct band gap, indicating substantial transfer of charge across the junction of the same layer. Interestingly, a redshift is found in the visible light region of the optical absorption spectra of BX-SiS heterobilayers. The comparatively larger hole mobility (14 000 cm(2) V-1 s(-1)) of BP-SiS preferably allows hole conduction in the zigzag-direction. More importantly, the excellent band edge values of the standard redox potential and smaller Gibbs free energy for the adsorption of hydrogen (& UDelta;G(H*)) make them ideal for performing the hydrogen evolution reaction (HER) mechanism under solar irradiation. These findings offer exciting opportunities for developing next-generation devices based on BX-SiS heterobilayers for promising applications in nanoelectronics, optoelectronic devices and photocatalysts for water dissociation into hydrogen to produce renewable clean energy. | - |
dc.language | English | - |
dc.publisher | The Royal Society of Chemistry | - |
dc.title | First-principles study of BX-SiS (X = As, P) van der Waals heterostructures for enhanced photocatalytic performance | - |
dc.type | Article | - |
dc.identifier.doi | 10.1039/d3na00167a | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Nanoscale Advances, v.5, no.17, pp.4598 - 4608 | - |
dc.citation.title | Nanoscale Advances | - |
dc.citation.volume | 5 | - |
dc.citation.number | 17 | - |
dc.citation.startPage | 4598 | - |
dc.citation.endPage | 4608 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 001049755500001 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | BERRYS PHASE | - |
dc.subject.keywordPlus | MOS2 | - |
dc.subject.keywordPlus | MOBILITY | - |
dc.subject.keywordPlus | PHOSPHORENE | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.