Full metadata record

DC Field Value Language
dc.contributor.authorAhmad, Sheraz-
dc.contributor.authorDin, H. U.-
dc.contributor.authorSabir, S. S. Ullah-
dc.contributor.authorAmin, B.-
dc.date.accessioned2024-01-19T09:00:07Z-
dc.date.available2024-01-19T09:00:07Z-
dc.date.created2023-08-31-
dc.date.issued2023-09-
dc.identifier.issn2516-0230-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113331-
dc.description.abstractThe vertical integration of two-dimensional (2D) materials through weak van der Waals (vdW) interactions is gaining tremendous attention for application in nanotechnology and photovoltaics. Here, we performed first-principles study of the electronic band structure, optical and photocatalytic properties of vertically stacked heterostructures based on boron pnictides BX (X = As, P) and SiS monolayers. Both heterobilayers possess a stable geometry and reveal type I band alignment with a direct band gap, indicating substantial transfer of charge across the junction of the same layer. Interestingly, a redshift is found in the visible light region of the optical absorption spectra of BX-SiS heterobilayers. The comparatively larger hole mobility (14 000 cm(2) V-1 s(-1)) of BP-SiS preferably allows hole conduction in the zigzag-direction. More importantly, the excellent band edge values of the standard redox potential and smaller Gibbs free energy for the adsorption of hydrogen (& UDelta;G(H*)) make them ideal for performing the hydrogen evolution reaction (HER) mechanism under solar irradiation. These findings offer exciting opportunities for developing next-generation devices based on BX-SiS heterobilayers for promising applications in nanoelectronics, optoelectronic devices and photocatalysts for water dissociation into hydrogen to produce renewable clean energy.-
dc.languageEnglish-
dc.publisherThe Royal Society of Chemistry-
dc.titleFirst-principles study of BX-SiS (X = As, P) van der Waals heterostructures for enhanced photocatalytic performance-
dc.typeArticle-
dc.identifier.doi10.1039/d3na00167a-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNanoscale Advances, v.5, no.17, pp.4598 - 4608-
dc.citation.titleNanoscale Advances-
dc.citation.volume5-
dc.citation.number17-
dc.citation.startPage4598-
dc.citation.endPage4608-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001049755500001-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusBERRYS PHASE-
dc.subject.keywordPlusMOS2-
dc.subject.keywordPlusMOBILITY-
dc.subject.keywordPlusPHOSPHORENE-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE