Full metadata record

DC Field Value Language
dc.contributor.authorAhmad, Sheraz-
dc.contributor.authorDin, H. U.-
dc.contributor.authorNawaz, S.-
dc.contributor.authorNguyen, Son-Tung-
dc.contributor.authorNguyen, Cuong Q.-
dc.contributor.authorNguyen, Chuong V.-
dc.date.accessioned2024-01-19T09:00:45Z-
dc.date.available2024-01-19T09:00:45Z-
dc.date.created2023-07-06-
dc.date.issued2023-09-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113357-
dc.description.abstractTwo-dimensional (2D) materials with high specific capacities and superior physical properties are essential for designing rechargeable metal-ion batteries. In this study, first-principles calculations were performed to evaluate the potential of a WSSe monolayer as an electrode material for rechargeable lithium (Li), sodium (Na), and potassium (K) ion batteries. Our results showed that all alkali adsorptions were energetically stable and caused a semiconductor-to-metal transition, improving electronic conductivity. The calculated open-circuit voltage (OCV) for Li ions (0.48 V), Na ions (0.57 V), and K ions (0.37 V) was less than 1 V, which is critical for high charge and discharge rates. The maximum theoretical capacities for Li, Na, and K atoms adsorbed on the Janus WSSe monolayer were 477.8, 371.5, and 156.0 mAh/g, respectively. Our calculated migration energy barriers for Li, Na and K on S layer (Se layer) are (0.25, 0.07 and 0.07 (0.18, 0.04 and 0.038) eV, respectively, suggesting that the Se layer experiences faster Li-ion diffusion than the S layer. The ion diffusion potential for Li, Na, and K on the S layer (Se layer) for path 1 was considerably lower than paths 2 and 3, suggesting that the Se layer has faster Li-ion diffusion than the S layer. These findings provide a promising avenue for designing high-performing anode materials for rechargeable metal-ion batteries.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleFirst principles study of the adsorption of alkali metal ions (Li, Na, and K) on Janus WSSe monolayer for rechargeable metal-ion batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.apsusc.2023.157545-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplied Surface Science, v.632-
dc.citation.titleApplied Surface Science-
dc.citation.volume632-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001010784500001-
dc.identifier.scopusid2-s2.0-85160363578-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusPROMISING ANODE MATERIAL-
dc.subject.keywordPlusLITHIUM ADSORPTION-
dc.subject.keywordPlusSINGLE-LAYER-
dc.subject.keywordPlusAB-INITIO-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusSTRAIN-
dc.subject.keywordPlusMOS2-
dc.subject.keywordPlusDICHALCOGENIDES-
dc.subject.keywordPlusPHOTOCATALYSTS-
dc.subject.keywordAuthorJanus WSSe-
dc.subject.keywordAuthorAlkali adsorptions and diffusion-
dc.subject.keywordAuthorMetal-ion batteries-
dc.subject.keywordAuthorFirst-principles calculations-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE