Full metadata record

DC Field Value Language
dc.contributor.authorLee, Donggeun-
dc.contributor.authorJung, Arum-
dc.contributor.authorSon, Jeong Gon-
dc.contributor.authorYeom, Bongjun-
dc.date.accessioned2024-01-19T09:01:51Z-
dc.date.available2024-01-19T09:01:51Z-
dc.date.created2023-08-31-
dc.date.issued2023-08-
dc.identifier.issn2405-8297-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113402-
dc.description.abstractLi-metal batteries with high energy capacities and charging rates remain far from practical implementation, mainly due to uncontrollable Li dendrite growth. Herein, we report poly(ether imide)/aramid nanofibrillar (PEI/ ANF) composite separators fabricated using the phase-inversion induced co-assembly method, which can effectively suppress dendrite growth. Phase-inversion processes facilitated the co-assembly of PEI agglomerates and self-assembled ANFs into composite nanofibrillar network structures to achieve ultrahigh bulk porosity (>95%) with controlled surface porous structures. Additionally, the unique shapes of the undulated PEI sheaths over the ANF nanofibrils promoted a high surface area of the exposed ether (C-O-C) and carbonyl (C=O) functionality with high affinity to carbonate electrolytes and Li+ and PF6 -ions. The resultant films presented enhanced ionic conductivities of up to 3.30 mS cm-1, and a maximum Li+ ion transference number of 0.84. These characteristics promote the formation of compact and stable fluorine-rich solid-electrolyte interphase (SEI) layers on the Li-metal anodes and effectively suppressed Li dendrite growth under extremely high charge/discharge conditions. The Li/Li symmetric cells exhibited stable operation up to 1500 cycles with a high current density of 10 mA cm-2. Moreover, LiFePO4/Li full cells with a high cathode mass loading (6-7 mg cm-2) exhibited a ca-pacity retention of 74.3% after 500 cycles at 10 C-rate (12.0 mA cm-2). The suggested fabrication method would serve as a novel and promising approach for separators in next-generation batteries with high energy density and high C-rate capability.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titlePhase-inversion Induced Co-assembly of Poly(ether imide)/Aramid Nanofibrillar Composite Separators for High-speed Lithium-metal Batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.ensm.2023.102902-
dc.description.journalClass1-
dc.identifier.bibliographicCitationEnergy Storage Materials, v.61-
dc.citation.titleEnergy Storage Materials-
dc.citation.volume61-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001049396300001-
dc.identifier.scopusid2-s2.0-85166481361-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusGEL POLYMER ELECTROLYTE-
dc.subject.keywordPlusDENDRITE-FREE-
dc.subject.keywordPlusMORPHOLOGY-
dc.subject.keywordPlusMEMBRANES-
dc.subject.keywordPlusANODE-
dc.subject.keywordAuthorPoly(ether imide)-
dc.subject.keywordAuthoraramid nanofiber-
dc.subject.keywordAuthorself-assembly-
dc.subject.keywordAuthorlithium dendrite suppression-
dc.subject.keywordAuthorfast charge-discharge capability-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE