Full metadata record

DC Field Value Language
dc.contributor.authorKim, Young-Min-
dc.contributor.authorHong, Yerin-
dc.contributor.authorHur, Kahyun-
dc.contributor.authorKim, Min-Seok-
dc.contributor.authorSung, Yun-Mo-
dc.date.accessioned2024-01-19T09:02:20Z-
dc.date.available2024-01-19T09:02:20Z-
dc.date.created2023-08-17-
dc.date.issued2023-08-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113422-
dc.description.abstractThe photoelectrochemical behavior of Rh cluster-deposited hematite (a-Fe2O3) photoanodes (a-Fe2O3@Rh) was investigated. The interactions between Rh clusters and a-Fe2O3 nanorods were elucidated both experimentally and computationally. A facile UV-assisted solution casting deposition method allowed the deposition of 2 nm Rh clusters on a-Fe2O3. The deposited Rh clusters effectively enhanced the photoelectrochemical performance of the a-Fe2O3 photoanode, and electrochemical impedance spectroscopy (EIS) and Mott-Schottky analysis were applied to understand the working mechanism for the a-Fe2O3@Rh photoanodes. The results revealed a distinctive carrier transport mechanism for a-Fe2O3@Rh and increased carrier density, while the absorbance spectra remained unchanged. Furthermore, density functional theory (DFT) calculations of the oxygen evolution reaction (OER) mechanism corresponded well with the experimental results, indicating a reduced overpotential of the rate-determining step. In addition, DFT calculation models based on the X-ray diffraction (XRD) measurements and X-ray photoelectron spectroscopy (XPS) results provided precise water-splitting mechanisms for the fabricated a-Fe2O3 and a-Fe2O3@Rh nanorods. Owing to enhanced carrier generation and hole transfer, the optimum a-Fe2O3@Rh3 sample showed 78% increased photocurrent density, reaching 1.12 mA/cm(-2) at 1.23 V-RHE compared to that of the pristine a-Fe2O3 nanorods electrode.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleSurface Rh-Boosted Photoelectrochemical Water Oxidation of a-Fe2O3 by Reduced Overpotential in the Rate-Determining Step-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.3c04458-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.15, no.31, pp.37290 - 37299-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume15-
dc.citation.number31-
dc.citation.startPage37290-
dc.citation.endPage37299-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001034032100001-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusHEMATITE-
dc.subject.keywordPlusALPHA-FE2O3-
dc.subject.keywordPlusPHOTOANODES-
dc.subject.keywordPlusXPS-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusDOPANTS-
dc.subject.keywordPlusFILMS-
dc.subject.keywordAuthorphotoelectrochemical water splitting-
dc.subject.keywordAuthorrhodium catalyst-
dc.subject.keywordAuthoroxygen evolution reaction-
dc.subject.keywordAuthor& alpha-
dc.subject.keywordAuthor-Fe2O3 photoanode-
dc.subject.keywordAuthoroverpotential-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE