Full metadata record

DC Field Value Language
dc.contributor.authorHan, Won Bae-
dc.contributor.authorKo, Gwan-Jin-
dc.contributor.authorYang, Seung Min-
dc.contributor.authorKang, Heeseok-
dc.contributor.authorLee, Joong Hoon-
dc.contributor.authorShin, Jeong-Woong-
dc.contributor.authorJang, Tae-Min-
dc.contributor.authorHan, Sungkeun-
dc.contributor.authorKim, Dong-Je-
dc.contributor.authorLim, Jun Hyeon-
dc.contributor.authorRajaram, Kaveti-
dc.contributor.authorBandodkar, Amay Jairaj-
dc.contributor.authorHwang, Suk-Won-
dc.date.accessioned2024-01-19T09:02:34Z-
dc.date.available2024-01-19T09:02:34Z-
dc.date.created2023-08-11-
dc.date.issued2023-08-
dc.identifier.issn1936-0851-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113431-
dc.description.abstractAlthough biodegradable, transientelectronic devicesmust dissolveor decompose via environmental factors, an effective waterproofingor encapsulation system is essential for reliable, durable operationfor a desired period of time. Existing protection approaches use multipleor alternate layers of electrically inactive organic/inorganic elementscombined with polymers; however, their high mechanical stiffness isnot suitable for soft, time-dynamic biological tissues/skins/organs.Here, we introduce a stretchable, bioresorbable encapsulant usingnanoparticle-incorporated elastomeric composites with modificationsof surface morphology. Nature-inspired micropatterns reduce the diffusionarea for water molecules, and embedded nanoparticles impede waterpermeation, which synergistically enhances the water-barrier performance.Empirical and theoretical evaluations validate the encapsulation mechanismsunder strains. Demonstration of a soft, degradable shield with anoptical component under a biological solution highlights the potentialapplicability of the proposed encapsulation strategy.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleMicropatterned Elastomeric Composites for Encapsulation of Transient Electronics-
dc.typeArticle-
dc.identifier.doi10.1021/acsnano.3c03063-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Nano, v.17, no.15, pp.14822 - 14830-
dc.citation.titleACS Nano-
dc.citation.volume17-
dc.citation.number15-
dc.citation.startPage14822-
dc.citation.endPage14830-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001037676500001-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusINTERFACES-
dc.subject.keywordAuthorbiodegradable elastomer-
dc.subject.keywordAuthorpolymer composite-
dc.subject.keywordAuthorstretchable encapsulation-
dc.subject.keywordAuthorbiodegradableelectronics-
dc.subject.keywordAuthortransient electronics-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE