Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Thakare, Kamalakar Vijay | - |
dc.contributor.author | Dogra, Debi Prosad | - |
dc.contributor.author | Choi, Heeseung | - |
dc.contributor.author | Kim, Haksub | - |
dc.contributor.author | Kim, Ig-Jae | - |
dc.date.accessioned | 2024-01-19T09:03:25Z | - |
dc.date.available | 2024-01-19T09:03:25Z | - |
dc.date.created | 2023-05-25 | - |
dc.date.issued | 2023-08 | - |
dc.identifier.issn | 0031-3203 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/113469 | - |
dc.description.abstract | Existing video anomaly detection methods and datasets suffer from restricted anomaly categories contain-ing single-source (CCTV) videos recorded in controlled environment, inadequate annotations, and lack of adequate supervision. To mitigate these problems, we introduce a new dataset (RareAnom) containing 17 rare types of real-world anomalies (2200 videos) recorded using multiple sources (e.g., CCTV, hand-held cameras, dash-cams, and mobile phones) with rich temporal annotations. A new fully unsupervised anomaly detection and classification method has been proposed. It has three stages: training of a 3D Con-volution Autoencoder using pseudo-labelled video segments, anomaly detection using latent features, and classification. Unlike the existing datasets, we have benchmarked RareAnom using three levels of super-vision: fully, weakly, and unsupervised. It has been compared with UCF-Crime and XD-Violence datasets. The proposed anomaly detection and classification method beats the latest unsupervised methods by 4.49%, 8.66%, and 6.77% on RareAnom, UCF-Crime, and XD-violence datasets, respectively.(c) 2023 Elsevier Ltd. All rights reserved. | - |
dc.language | English | - |
dc.publisher | Pergamon Press | - |
dc.title | RareAnom: A Benchmark Video Dataset for Rare Type Anomalies | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.patcog.2023.109567 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Pattern Recognition, v.140 | - |
dc.citation.title | Pattern Recognition | - |
dc.citation.volume | 140 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000978788000001 | - |
dc.identifier.scopusid | 2-s2.0-85151693326 | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Artificial Intelligence | - |
dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalResearchArea | Engineering | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | ABNORMAL EVENT DETECTION | - |
dc.subject.keywordPlus | LOCALIZATION | - |
dc.subject.keywordAuthor | Video anomaly detection | - |
dc.subject.keywordAuthor | Unsupervised learning | - |
dc.subject.keywordAuthor | Temporal encoding | - |
dc.subject.keywordAuthor | Rare anomalies | - |
dc.subject.keywordAuthor | Anomaly classification | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.