Full metadata record

DC Field Value Language
dc.contributor.authorByeon, Ayeong-
dc.contributor.authorChoi, Jae Won-
dc.contributor.authorLee, Hong Woo-
dc.contributor.authorYun, Won Chan-
dc.contributor.authorZhang, Wenjun-
dc.contributor.authorHwang, Chang-Kyu-
dc.contributor.authorLee, Seung Yong-
dc.contributor.authorHan, Sang Soo-
dc.contributor.authorKim, Jong Min-
dc.contributor.authorLee, Jae W.-
dc.date.accessioned2024-01-19T09:03:45Z-
dc.date.available2024-01-19T09:03:45Z-
dc.date.created2023-09-07-
dc.date.issued2023-07-
dc.identifier.issn0926-3373-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113484-
dc.description.abstractElectrochemical hydrogen peroxide (H2O2) synthesis via the two-electron oxygen reduction reaction (2e(-) ORR) is considered a promising alternative to the anthraquinone process due to its eco-friendliness and on-site production. Recently, although B-doped carbon (BC) has been suggested as a promising 2e(-) ORR catalyst, the question of whether BC can further improve catalytic activity by tuning the doping configuration and site still remains unanswered. This work demonstrates CO2-derived edge-B-doped porous carbon (E-BPC) for highly effective electrochemical H2O2 production. Herein, it is revealed that the oxygenated B-doping configurations (BCO2 and BC2O) at edge sites are responsible for enhanced 2e(-) ORR activity and stability. Outstanding mass activity (54.7 A g(-1) at 0.65 V vs. RHE) is demonstrated with the highest high production rate in a flow reactor among the reported studies, of 24.3 mol g(cat)(-1) h(-1). The faradaic efficiency of the E-BPC was maintained (similar to 82%) for over 100 h without performance degradation.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleCO2-derived edge-boron-doped hierarchical porous carbon catalysts for highly effective electrochemical H2O2 production-
dc.typeArticle-
dc.identifier.doi10.1016/j.apcatb.2023.122557-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplied Catalysis B: Environmental, v.329-
dc.citation.titleApplied Catalysis B: Environmental-
dc.citation.volume329-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001053841700001-
dc.identifier.scopusid2-s2.0-85149387313-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusMETAL-FREE ELECTROCATALYSTS-
dc.subject.keywordPlusOXYGEN REDUCTION-
dc.subject.keywordPlusHYDROGEN-PEROXIDE-
dc.subject.keywordPlusCO2-
dc.subject.keywordPlusEFFICIENCY-
dc.subject.keywordPlusNANOTUBES-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusNITRIDE-
dc.subject.keywordPlusDIOXIDE-
dc.subject.keywordAuthorCO2-derived porous carbon-
dc.subject.keywordAuthorEdge-boron doping-
dc.subject.keywordAuthorHydrogen peroxide production-
dc.subject.keywordAuthorOxygen reduction reaction-
dc.subject.keywordAuthorFlow reactor-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE