Full metadata record

DC Field Value Language
dc.contributor.authorAhmad, Sheraz-
dc.contributor.authorSohail, Khumal-
dc.contributor.authorChen, Letian-
dc.contributor.authorXu, Hu-
dc.contributor.authorDin, H. U.-
dc.contributor.authorZhou, Zhen-
dc.date.accessioned2024-01-19T09:03:47Z-
dc.date.available2024-01-19T09:03:47Z-
dc.date.created2023-08-31-
dc.date.issued2023-07-
dc.identifier.issn0360-3199-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113486-
dc.description.abstractTwo-dimensional materials stacked via van der Waals (vdW) forces provide a revolutionary route toward high-performance optoelectronic and renewable energy devices. Here, we report vdW heterostructures (vdWHs) consisting of GeC, ZnO and Al2SO monolayers on first-principles computations. GeC (ZnO)-Al2SO vdWHs are both stable type-II semi-conductors with indirect (direct) band gaps. This significantly suppresses the recombina-tion of photogenerated charge carriers across the interface, making them promising for light detection and harvesting applications. Charge transfer from GeC (Al2SO) layer to Al2SO (ZnO) layer leads to p-doping in GeC (Al2SO) and n-doping in Al2SO (ZnO) of GeC (ZnO)-Al2SO vdWHs. In contrast to pristine monolayers, higher carrier mobility promotes charge transfer to the surface and reduces carrier recombination in GeC (ZnO)-Al2SO vdWHs. Further, the absorption spectra indicate redshift (blueshift) and reveal more solar light is absorbed by GeC (ZnO)-AlS2O vdWHs in the visible (ultraviolet) region. The band edge positions suggest that GeC-Al2SO vdWHs can reduce water into H2 but fails to perform an oxidation reaction at pH = 0. More interestingly, ZnO-Al2SO vdWHs can perform redox reactions, making them prominent for overall water-splitting reactions. Our computational findings provide a path for the design of vdWHs for future optoelectronic and photovoltaic devices.& COPY; 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPergamon Press Ltd.-
dc.titleType-II van der Waals heterostructures of GeC, ZnO and Al2SO monolayers for promising optoelectronic and photocatalytic applications-
dc.typeArticle-
dc.identifier.doi10.1016/j.ijhydene.2023.03.268-
dc.description.journalClass1-
dc.identifier.bibliographicCitationInternational Journal of Hydrogen Energy, v.48, no.65, pp.25354 - 25365-
dc.citation.titleInternational Journal of Hydrogen Energy-
dc.citation.volume48-
dc.citation.number65-
dc.citation.startPage25354-
dc.citation.endPage25365-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001048874100001-
dc.identifier.scopusid2-s2.0-85151627560-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.type.docTypeArticle-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusHETEROJUNCTIONS-
dc.subject.keywordAuthorTwo-dimensional (2D) materials-
dc.subject.keywordAuthorvan der Waals heterostructures-
dc.subject.keywordAuthorType-II band alignment-
dc.subject.keywordAuthorOptical absorption-
dc.subject.keywordAuthorPhotocatalysis-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE