Full metadata record

DC Field Value Language
dc.contributor.authorHashemi, Negah-
dc.contributor.authorNandy, Subhajit-
dc.contributor.authorAleshkevych, Pavlo-
dc.contributor.authorChae, Keun Hwa-
dc.contributor.authorNajafpour, Mohammad Mahdi-
dc.date.accessioned2024-01-19T09:04:18Z-
dc.date.available2024-01-19T09:04:18Z-
dc.date.created2023-08-02-
dc.date.issued2023-07-
dc.identifier.issn0020-1669-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113515-
dc.description.abstractThe reaction of & beta;-Ni(OH)(2) in the presenceof cerium(IV) ammonium nitrate during oxygen-evolution reaction wasinvestigated. Cerium(IV) ammonium nitrate (CAN) has been extensivelyused asa sacrificial oxidant to study water-oxidation catalysts (WOCs). Althoughnickel hydroxide has been extensively investigated as WOCs, the water-oxidationreaction (WOR) and mechanistic studies in the presence of CAN andnickel hydroxide were rarely performed. Herein, using in situ Ramanspectroscopy, in situ X-ray absorption spectroscopy, and in situ electronparamagnetic resonance spectroscopy, WOR in the presence of CAN and & beta;-Ni(OH)(2) was investigated. The proposed WOR mechanisminvolves the oxidation of & beta;-Ni(OH)(2) by CAN, leadingto the formation of & gamma;-NiO(OH). & gamma;-NiO(OH), in the presenceof acidic conditions, evolves oxygen and is reduced to Ni(II). Inother words, the role of & beta;-Ni(OH)(2) is the storageof four oxidizing equivalents by CAN, and then a four-electron reactioncould result in a WOR with low activation energy. & beta;-Ni(OH)(2) in CAN at concentrations of 0.10 M shows WOR with a maximumturnover frequency and a turnover number (for 1000 s) of 5.5 x10(-5)/s and 2.0 x 10(-2) mol(O-2)/mol(Ni), respectively. In contrast to & beta;-Ni(OH)(2), Ni(OH2)(6) (2+) (aq) could notbe oxidized to & gamma;-NiO(OH). Indeed, Ni(OH2)(6) (2+) (aq) is the decomposition product of & beta;-Ni(OH)(2)/CAN.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleReaction between Nickel Hydroxide and Cerium(IV) Ammonium Nitrate in Aqueous Solution-
dc.typeArticle-
dc.identifier.doi10.1021/acs.inorgchem.3c01868-
dc.description.journalClass1-
dc.identifier.bibliographicCitationInorganic Chemistry, v.62, no.30, pp.12157 - 12165-
dc.citation.titleInorganic Chemistry-
dc.citation.volume62-
dc.citation.number30-
dc.citation.startPage12157-
dc.citation.endPage12165-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001028708000001-
dc.relation.journalWebOfScienceCategoryChemistry, Inorganic & Nuclear-
dc.relation.journalResearchAreaChemistry-
dc.type.docTypeArticle-
dc.subject.keywordPlusEFFICIENT WATER OXIDATION-
dc.subject.keywordPlusSITU RAMAN-SPECTROSCOPY-
dc.subject.keywordPlusMANGANESE OXIDE-
dc.subject.keywordPlusOXYGEN EVOLUTION-
dc.subject.keywordPlusSTACKING-FAULTS-
dc.subject.keywordPlusMETAL-OXIDES-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusCOMPLEXES-
dc.subject.keywordPlusNI(OH)(2)-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE