Controllable tunability of a Chern number within the electronic-nuclear spin system in diamond

Authors
Lee, JunghyunArai, KeigoZhang, HuiliangKu, Mark J. H.Walsworth, Ronald L.
Issue Date
2023-07
Publisher
The University of New South Wales (UNSW Australia) | Nature Publishing Group
Citation
npj Quantum Information, v.9, no.1
Abstract
Chern numbers characterize topological phases in a wide array of physical systems. However, the resilience of system topology to external perturbations makes it challenging experimentally to investigate transitions between different phases. In this study, we demonstrate the transitions of a Chern number from 0 to 3, synthesized in an electronic-nuclear spin system associated with the nitrogen-vacancy (NV) centre in diamond. The Chern number is characterized by the number of degeneracies enclosed in a control Hamiltonian parameter sphere. Topological transitions between different phases are realized by varying the radius and offset of the sphere such that the Chern number changes. We show that the measured topological phase diagram is consistent with numerical calculations and can also be mapped onto an interacting three-qubit system. The NV system may also allow access to even higher Chern numbers, which could be applied to exploring exotic topology or topological quantum information.
Keywords
EXPERIMENTAL REALIZATION; BERRYS PHASE; QUANTUM; MODEL
ISSN
2056-6387
URI
https://pubs.kist.re.kr/handle/201004/113520
DOI
10.1038/s41534-023-00732-6
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE