Full metadata record

DC Field Value Language
dc.contributor.authorRam, Swetarekha-
dc.contributor.authorChoi, Gwan Hyun-
dc.contributor.authorLee, Albert S.-
dc.contributor.authorLee, Seung-Cheol-
dc.contributor.authorBhattacharjee, Satadeep-
dc.date.accessioned2024-01-19T09:04:32Z-
dc.date.available2024-01-19T09:04:32Z-
dc.date.created2023-07-20-
dc.date.issued2023-07-
dc.identifier.issn1932-7447-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113527-
dc.description.abstractToenable efficient energy conversion and storage, the developmentof effective electrocatalysts for the oxygen evolution reaction (OER)is crucial. Single-atom catalysts (SACs) with 100% active sites forthe OER are highly promising in this regard. In this study, we investigatedthe OER activities of Co single atoms (Co-SA) adsorbed onmetallic MXenes, including Ti3C2O2 and Mo2CO2, both in their stoichiometric formand with oxygen vacancies (O-v), using spin-polarized first-principles-basedcalculations. The rate-determining step in each case was found tobe the conversion of *O from *OH. Our calculations showed that thepresence of oxygen vacancies decreased the OER activity in Co-SA@Ti3C2O2-& delta;,resulting in a higher overpotential, while it increased the OER activityin Co-SA@Mo2CO2. We explain such resultsusing insights from the density of states, charge density variation,and bonding analysis via crystal orbital Hamilton population. We alsoshow that the hybridization between the d-states of the Co-SA and the transition metal sites of the catalyst-bed (Ti/Mo) playsa decisive role.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleUnraveling the Influence of Oxygen Vacancies on the OER Performance of Co Single-Atom Catalysts Adsorbed on MXenes-
dc.typeArticle-
dc.identifier.doi10.1021/acs.jpcc.3c02433-
dc.description.journalClass1-
dc.identifier.bibliographicCitationThe Journal of Physical Chemistry C, v.127, no.26, pp.12576 - 12585-
dc.citation.titleThe Journal of Physical Chemistry C-
dc.citation.volume127-
dc.citation.number26-
dc.citation.startPage12576-
dc.citation.endPage12585-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001018221100001-
dc.identifier.scopusid2-s2.0-85164451356-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusMONOLAYER MXENE-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusCARBIDE-
dc.subject.keywordPlusELECTROLYSIS-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordPlusCAPACITY-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusCARBON-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE