Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Sun Hee-
dc.contributor.authorKim, Woong-Ju-
dc.contributor.authorLee, Byeong-hyeon-
dc.contributor.authorKim, Sung-Chul-
dc.contributor.authorKang, Jin Gu-
dc.contributor.authorKim, Dong-Wan-
dc.date.accessioned2024-01-19T09:05:03Z-
dc.date.available2024-01-19T09:05:03Z-
dc.date.created2023-06-15-
dc.date.issued2023-07-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113552-
dc.description.abstractSulfide-based Li superionic conductors are being considered good solid electrolytes for all-solid-state batteries. Despite some benefits of conventional solid-state methods, the end goal of the synthesis of sulfide electrolytes is the development of new liquid-phase methods. Herein, we demonstrate the rational design of a one-pot solvent-assisted route for the simple, facile, and low-cost synthesis of the Sn-substituted Li argyrodite superionic conductors. Our method enables the successful incorporation of Sn into the host lattices, yielding highly crystalline materials with high ionic conductivity (similar to 2 mS cm(-1)), good air stability (20% humidity), and excellent Li metal compatibility (1500 h stability). Benefitting from these, at 0.1C, the full cell based on Li6.125P0.875Sn0.125S5Br exhibits an initial discharge capacity of 151 mA h g(-1) and similar to 66% capacity retention after 50 cycles (99 mA h g(-1)). This work presents an unprecedented solvent-engineered approach for the fabrication of versatile Li argyrodites substituted with aliovalent cations.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.titleRational design of one-pot solvent-assisted synthesis for multi-functional Sn-substituted superionic Li argyrodite solid electrolytes-
dc.typeArticle-
dc.identifier.doi10.1039/d3ta01955a-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Materials Chemistry A, v.11, no.27, pp.14690 - 14704-
dc.citation.titleJournal of Materials Chemistry A-
dc.citation.volume11-
dc.citation.number27-
dc.citation.startPage14690-
dc.citation.endPage14704-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000996925900001-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusLIQUID-PHASE TECHNIQUE-
dc.subject.keywordPlusLI6PS5X X-
dc.subject.keywordPlusION BATTERIES-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusBR-
dc.subject.keywordPlusCL-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusCONDUCTORS-
dc.subject.keywordPlusETHANOL-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE