An Endodontic Forecasting Model Based on the Analysis of Preoperative Dental Radiographs: A Pilot Study on an Endodontic Predictive Deep Neural Network
- Authors
- Lee, Junghoon; Seo, Hyunseok; Choi, Yoon Jeong; Lee, Chena; Kim, Sunil; Lee, Ye Sel; Lee, Sukjoon; Kim, Euiseong
- Issue Date
- 2023-06
- Publisher
- Lippincott Williams & Wilkins Ltd.
- Citation
- Journal of Endodontics, v.49, no.6, pp.710 - 719
- Abstract
- Introduction: This study aimed to evaluate the use of deep convolutional neural network (DCNN) algorithms to detect clinical features and predict the three-year outcome of end-odontic treatment on preoperative periapical radiographs. Methods: A database of single -root premolars that received endodontic treatment or retreatment by endodontists with presence of three-year outcome was prepared (n = 598). We constructed a 17-layered DCNN with a self-attention layer (Periapical Radiograph Explanatory System with Self -Attention Network [PRESSAN-17]), and the model was trained, validated, and tested to 1) detect 7 clinical features, that is, full coverage restoration, presence of proximal teeth, coronal defect, root rest, canal visibility, previous root filling, and periapical radiolucency and 2) predict the three-year endodontic prognosis by analyzing preoperative periapical radiographs as an input. During the prognostication test, a conventional DCNN without a self-attention layer (residual neural network [RESNET]-18) was tested for comparison. Accuracy and area under the receiver-operating-characteristic curve were mainly evaluated for performance compari-son. Gradient-weighted class activation mapping was used to visualize weighted heatmaps. Results: PRESSAN-17 detected full coverage restoration (area under the receiver -operating-characteristic curve = 0.975), presence of proximal teeth (0.866), coronal defect (0.672), root rest (0.989), previous root filling (0.879), and periapical radiolucency (0.690) significantly, compared to the no-information rate (P < .05). Comparing the mean accuracy of 5-fold validation of 2 models, PRESSAN-17 (67.0%) showed a significant difference to RESNET-18 (63.4%, P < .05). Also, the area under average receiver-operating-characteristic of PRESSAN-17 was 0.638, which was significantly different compared to the no-information rate. Gradient-weighted class activation mapping demonstrated that PRESSAN-17 correctly identified clinical features. Conclusions: Deep convolutional neural networks can detect several clinical features in periapical radiographs accurately. Based on our findings, well -developed artificial intelligence can support clinical decisions related to endodontic treatments in dentists. (J Endod 2023;49:710-719.)
- Keywords
- ARTIFICIAL-INTELLIGENCE; TEETH; Convolutional neural network; endodontic treatment; Grad-CAM; endodontic outcome; artificial intelligence; PRESSAN-17
- ISSN
- 0099-2399
- URI
- https://pubs.kist.re.kr/handle/201004/113627
- DOI
- 10.1016/j.joen.2023.03.015
- Appears in Collections:
- KIST Article > 2023
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.