Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yong, Euiju | - |
dc.contributor.author | Nam, Donghyeon | - |
dc.contributor.author | Kim, Yangsoo | - |
dc.contributor.author | Kim, Kwangsoo | - |
dc.contributor.author | Kim, Byung-Hyun | - |
dc.contributor.author | Ko, Yongmin | - |
dc.contributor.author | Cho, Jinhan | - |
dc.date.accessioned | 2024-01-19T09:30:37Z | - |
dc.date.available | 2024-01-19T09:30:37Z | - |
dc.date.created | 2023-07-27 | - |
dc.date.issued | 2023-06 | - |
dc.identifier.issn | 2405-8297 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/113635 | - |
dc.description.abstract | Conventional current collectors in lithium-ion batteries (LIBs) are generally nonactive components. However, enhancing their electroactive properties and increasing the electroactive surface area can significantly improve the areal energy performance of next-generation battery electrodes. Herein, we introduce an electrochemically active textile current collector that delivers high energy storage performance, achieved through interfacial interaction assembly-induced electroplating. We first prepared metal nanoparticle/multiwalled carbon nanotube multilayer-incorporated cotton textiles using complementary interaction-mediated layer-by-layer assembly, and subsequently electroplated them with Cu. The resulting textile exhibited a high areal capacity of similar to 3.27 mA h cm(-2) at 0.875 mA cm(-2), excellent cycling stability, and a strong energy recovery effect, thanks to the synergistic contributions of the large active surface area of the fibril structure, the robust interfacial assembly, and the formation of a metal oxide NP/pseudocapacitive polymeric gel-like phase at the electrode/electrolyte interface. Moreover, when incorporating Li4Ti5O12 with a theoretical capacity of 175 mA h g(- 1) into our textile current collector, the specific capacity and areal capacity of the LIB anode can be increased up to similar to 573 mA h g(- 1) and 8.60 mA h cm(-2) (at 15 mg cm(-2) LTO), respectively, outperforming those of previously reported LTO-based anodes. | - |
dc.language | English | - |
dc.publisher | Elsevier BV | - |
dc.title | An electrochemically active textile current collector with a high areal capacity and a strong energy recovery effect using an interfacial interaction assembly | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.ensm.2023.102813 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Energy Storage Materials, v.60 | - |
dc.citation.title | Energy Storage Materials | - |
dc.citation.volume | 60 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 001010583200001 | - |
dc.identifier.scopusid | 2-s2.0-85159299390 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | LITHIUM-ION-BATTERY | - |
dc.subject.keywordPlus | ELASTIC BAND METHOD | - |
dc.subject.keywordPlus | ANODE MATERIAL | - |
dc.subject.keywordPlus | LI4TI5O12 ANODE | - |
dc.subject.keywordPlus | LI | - |
dc.subject.keywordPlus | CUO | - |
dc.subject.keywordPlus | PERFORMANCE | - |
dc.subject.keywordPlus | ELECTRODES | - |
dc.subject.keywordPlus | ORIGIN | - |
dc.subject.keywordPlus | NANOPARTICLES | - |
dc.subject.keywordAuthor | Cu textile | - |
dc.subject.keywordAuthor | Lithium-ion battery | - |
dc.subject.keywordAuthor | Negative fading | - |
dc.subject.keywordAuthor | Polymeric gel-like phase | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.