Full metadata record

DC Field Value Language
dc.contributor.authorKirk, Jaewon-
dc.contributor.authorKim, Yoondo-
dc.contributor.authorLee, Yu-Jin-
dc.contributor.authorKim, Minkyu-
dc.contributor.authorMin, Dong-Su-
dc.contributor.authorKim, Pyung Soon-
dc.contributor.authorSeo, Ji Hui-
dc.contributor.authorKim, Yongwoo-
dc.contributor.authorLee, Jaeyong-
dc.contributor.authorChoung, Jin Woo-
dc.contributor.authorSohn, Hyuntae-
dc.contributor.authorNam, Suk-Woo-
dc.contributor.authorYoon, Chang-Won-
dc.contributor.authorKim, Yongmin-
dc.contributor.authorJeong, Hyangsoo-
dc.date.accessioned2024-01-19T09:30:50Z-
dc.date.available2024-01-19T09:30:50Z-
dc.date.created2023-07-13-
dc.date.issued2023-06-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113647-
dc.description.abstractSodium borohydride (SBH) is a promising hydrogen (H2) carrier; however, its successful deployment has been limited to unmanned aerial vehicle applications. We reevaluated SBH hydrolysis for on-board vehicular appli-cations from an entirely new perspective using solid-phase SBH hydrolysis with a CO2-derived acid at elevated temperatures and pressures, enabling extremely efficient water utilization. This strategy afforded a high H2 storage density of 6.33 wt%, which could be extended to 10.4 wt% via water recovery from fuel cells. High -purity H2 with carbon monoxide levels below 10 ppm was obtained after methanation. Importantly, an energy-efficient SBH regeneration method using residual NaHCO2 was developed. A 1.2-kWe-level SBH hydrogen generation was evaluated with the fuel-cell operation, and a 20-kWe-level compact system was developed with a system-based volumetric H2 storage density of 25 g-H2/L. This technology will accelerate SBH-based vehicular applications at a level of 50 g-H2/L.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titlePushing the limits of sodium borohydride hydrolysis for on-board hydrogen generation systems-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2023.143233-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.466-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume466-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001006896100001-
dc.identifier.scopusid2-s2.0-85158915156-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusFORMIC-ACID-
dc.subject.keywordPlusGAS-
dc.subject.keywordPlusDEHYDROGENATION-
dc.subject.keywordPlusFUNDAMENTALS-
dc.subject.keywordPlusMETABORATE-
dc.subject.keywordPlusCATALYST-
dc.subject.keywordPlusVEHICLE-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusNABH4-
dc.subject.keywordAuthorHydrogen production-
dc.subject.keywordAuthorSodium borohydride-
dc.subject.keywordAuthorFormic acid-
dc.subject.keywordAuthor20kW e -level H 2 generation system-
dc.subject.keywordAuthorBorax regeneration-
dc.subject.keywordAuthorSodium borohydride value chain-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE